Skip to main content
Log in

An update on chloroplast genomes

  • Review Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Plant cells possess two more genomes besides the central nuclear genome: the mitochondrial genome and the chloroplast genome (or plastome). Compared to the gigantic nuclear genome, these organelle genomes are tiny and are present in high copy number. These genomes are less prone to recombination and, therefore, retain signatures of their age to a much better extent than their nuclear counterparts. Thus, they are valuable phylogenetic tools, giving useful information about the relative age and relatedness of the organisms possessing them. Unlike animal cells, mitochondrial genomes of plant cells are characterized by large size, extensive intramolecular recombination and low nucleotide substitution rates and are of limited phylogenetic utility. Chloroplast genomes, on the other hand, show resemblance to animal mitochondrial genomes in terms of phylogenetic utility and are more relevant and useful in case of plants. Conservation in gene order, content and lack of recombination make the plastome an attractive tool for plant phylogenetic studies. Their importance is reflected in the rapid increase in the availability of complete chloroplast genomes in the public databases. This review aims to summarize the progress in chloroplast genome research since its inception and tries to encompass all related aspects. Starting with a brief historical account, it gives a detailed account of the current status of chloroplast genome sequencing and touches upon RNA editing, ycfs, molecular phylogeny, DNA barcoding as well as gene transfer to the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen JF (2003). The function of genomes in bioenergetic organelles. Philos Trans Roy Soc Lond B Biol Sci 358: 19–37

    Article  CAS  Google Scholar 

  • Archibald JM (2005). Jumping genes and shrinking genomes – probing the evolution of eukaryotic photosynthesis with genomics. IUBMB Life 57: 539–547

    PubMed  CAS  Google Scholar 

  • Asano T, Tsudzuki T, Takahashi S, Shimada H and Kadowaki K (2004). Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11: 93–99

    Article  PubMed  CAS  Google Scholar 

  • Bausher MG, Singh ND, Lee SB, Jansen RK and Daniell H (2006). The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var `Ridge Pineapple': organization and phylogenetic relationships to other angiosperms. BMC Pl Biol 6: 21

    Article  CAS  Google Scholar 

  • Bedbrook JR and Bogorad L (1976). Endonuclease recognition sites mapped on Zea mays chloroplast DNA. Proc Natl Acad Sci USA 73: 4309–4313

    Article  PubMed  CAS  Google Scholar 

  • Belanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M (2006) Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum. Molec Genet Genomics 276: 464–477

    Google Scholar 

  • Bendich AJ (2004). Circular chloroplast chromosomes: the grand illusion. Pl Cell 16: 1661–1666

    Article  CAS  Google Scholar 

  • Boudreau E, Takahashi Y, Lemieux C, Turmel M and Rochaix JD (1997). The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16: 6095–6104

    Article  PubMed  CAS  Google Scholar 

  • Brennicke A, Grohmann L, Hiesel R, Knoop V and Schuster W (1993). The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants. FEBS Lett 325: 140–145

    Article  PubMed  CAS  Google Scholar 

  • Brocks JJ, Logan GA, Buick R and Summons RE (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Butterfield NJ (2000). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26: 386–404

    Article  Google Scholar 

  • Cai X, Fuller AL, McDougald LR and Zhu G (2003). Apicoplast genome of the coccidian Eimeria tenella. Gene 321: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL and Jansen R K (2006). Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol 6: 77

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC and Chaw SM (2006). The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molec Biol Evol 23: 279–291

    Article  PubMed  CAS  Google Scholar 

  • Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N and Savolainen V (2005). Land plants and DNA barcodes: short-term and long-term goals. Philos Trans Roy Soc Lond, B, Biol Sci 360: 1889–1895

    Article  CAS  Google Scholar 

  • Chiba Y (1951). Cytochemical studies on chloroplasts I. Cytologic demonstration of nucleic acids in chloroplasts. Cytologia (Tokyo) 16: 259–264

    CAS  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL and Jansen RK (2006). The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molec Biol Evol 23: 2175–2190

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Veeraraghavan N, Richter A, Wall K, Jansen R K, Leebens-Mack J, Makalowska I and dePamphilis C W (2006). ChloroplastDB: the chloroplast genome database. Nuclic Acids Res 34: D692–D696

    Article  CAS  Google Scholar 

  • Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112: 1503–1518

    Google Scholar 

  • Otis C, Lemieux C, Turmel M and Cambiaire JC (2006). The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol Biol 6: 37

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ and Koning AP (2006). The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 4: 12

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE and Penny SL (1999). The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Molec Evol 48: 236–244

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Davis JI, Soreng RJ, Garvin D and Anderson M J (1992). Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89: 7722–7726

    Article  PubMed  CAS  Google Scholar 

  • Drescher A, Ruf S, Carrer H, Bock R and Calsa T (2000). The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Pl J 22: 97–104

    Article  CAS  Google Scholar 

  • Embley TM and Martin W (2006). Eukaryotic evolution, changes and challenges. Nature 440: 623–630

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Bishop R, Shah T, Carlton JM, Hall N, Ren Q, Paulsen IT, Pain A, Berriman M, Wilson R J, Sato S, Ralph SA, Mann DJ, Xiong Z, Shallom SJ, Weidman J, Jiang L, Lynn J, Weaver B, Shoaibi A, Domingo AR, Wasawo D, Crabtree J, Wortman JR, Haas B, Angiuoli SV, Creasy TH, Lu C, Suh B, Silva JC, Utterback TR, Feldblyum TV, Pertea M, Allen J, Nierman WC, Taracha EL, Salzberg SL, White OR, Fitzhugh HA, Morzaria S, Venter JC, Fraser CM, Nene V and Villiers EP (2005). Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309: 134–137

    Article  PubMed  CAS  Google Scholar 

  • Gargano D, Vezzi A, Scotti N, Gray JC, Valle G, Grillo S, Cardi T (2005) The complete nucleotide sequence of potato (Solanum tuberosum cv. Desiree) chloroplast DNA In: Abstracts of the 2nd Solanaceae Genome Workshop 2005: 107

  • Glöckner G, Rosenthal A and Valentin K (2000). The structure and gene repertoire of an ancient red algal plastid genome. J Molec Evol 51: 382–390

    PubMed  Google Scholar 

  • Gockel G and Hachtel W (2000). Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151: 347–351

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Hansmann S and Martin WF (1997). Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: Revised molecular estimates of two seed plant divergence times. Pl Syst Evol 206: 337–351

    Article  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S and Hellwig FH (2003a). The chloroplast genome of the `basal' angiosperm Calycanthus fertilis – structural and phylogenetic analysis. Pl Syst Evol 242: 119–135

    Article  CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S and Hellwig FH (2003b). Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Molec Biol Evol 20: 1499–1505

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S and Hellwig FH (2004). The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Molec Biol Evol 21: 1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Holland B, Hirsch-Ernst KI and Hellwig FH (2005). Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Molec Biol Evol 22: 1813–1822

    Article  PubMed  CAS  Google Scholar 

  • Goulding SE, Olmstead RG, Morden CW and Wolfe KH (1996). Ebb and flow of the chloroplast inverted repeat. Molec Gen Genet 252: 195–206

    Article  PubMed  CAS  Google Scholar 

  • Hager M, Biehler K, Illerhaus J, Ruf S and Bock R (1999). Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b(6)f complex. EMBO J 18: 5834–5842

    Article  PubMed  CAS  Google Scholar 

  • Hagopian JC, Reis M, Kitajima JP, Bhattacharya D and Oliveira MC (2004). Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. J Molec Evol 59: 464–477

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98

    CAS  Google Scholar 

  • Hallick RB and Bairoch A (1994). Proposal for the naming of chloroplast genes. III. Nomenclature for open reading frames encoded in chloroplast genomes. Pl Molec Biol Rep 12: S29–S30

    Article  CAS  Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A and Stutz E (1993). Complete sequence of Euglena gracilis chloroplast DNA. Nucl Acids Res 21: 3537–3544

    Article  PubMed  CAS  Google Scholar 

  • Hebert PD, Cywinska A, Ball SL and deWaard JR (2003). Biological identifications through DNA barcodes. Proc Roy Soc Lond B Biol Sci 270: 313–321

    Article  CAS  Google Scholar 

  • Hebert PD and Gregory TR (2005). The promise of DNA barcoding for taxonomy. Syst Biol 54: 852–859

    Article  PubMed  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K and Sugiura M (1989). The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Molec Gen Genet 217: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Kusumegi T, Tsudzuki T and Sugiura M (1999). RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Molec Gen Genet 262: 462–467

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Grünheit N, Ahmadinejad N, Timmis JN and Martin W (2005). Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Pl Physiol 138: 1723–1733

    Article  CAS  Google Scholar 

  • Hupfer H, Swiatek M, Hornung S, Herrmann RG, Maier RM, Chiu WL and Sears B (2000). Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenothera plastomes. Molec Gen Genet 263: 581–585

    PubMed  CAS  Google Scholar 

  • Jansen RK, Kaittanis C, Lee S B, Saski C, Tomkins J, Alverson AJ and Daniell H (2006). Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6: 32

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J and Cui L (2005). Methods for obtaining and analyzing whole chloroplast genome sequences. Meth Enzymol 395: 348–384

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P and Soll J (2001). Toc, Tic and chloroplast protein import. Biochim Biophys Acta 1541: 64–79

    Article  PubMed  CAS  Google Scholar 

  • Kahlau S, Aspinall S, Gray JC and Bock R (2006). Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Molec Evol 63: 194–207

    Article  PubMed  CAS  Google Scholar 

  • Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ, Petersen G, Seberg O and Bremer K (1998). Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Pl Syst Evol 213: 259–287

    Article  Google Scholar 

  • Kato T, Kaneko T, Sato S, Nakamura Y and Tabata S (2000). Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7: 323–330

    Article  PubMed  CAS  Google Scholar 

  • Kim J-S, Jung JD, Lee J-A, Park H-W, Oh K-H, Jeong WJ, Choi DW, Liu JR and Cho KY (2006). Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Pl Cell Rep 25: 334–340

    Article  CAS  Google Scholar 

  • Kim KJ and Lee HL (2004). Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11: 247–261

    Article  PubMed  CAS  Google Scholar 

  • Kostianovsky M (2000). Evolutionary origin of eukaryotic cells. Ultrastruct Pathol 24: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Kowallik KV, Stoebe B, Schaffran I, Kroth-Pancic P and Freier U (1995). The chloroplast genome of a chlorophyll a + c-containing alga, Odontella sinensis. Pl Molec Biol Rep 13: 336–342

    Article  CAS  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA and Janzen DH (2005). Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102: 8369–8374

    Article  PubMed  CAS  Google Scholar 

  • Kugita M, Kaneko A, Yamamoto Y, Takeya Y, Matsumoto T and Yoshinaga K (2003a). The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucl Acids Res 31: 716–721

    Article  CAS  Google Scholar 

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T and Yoshinaga K (2003b). RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucl Acids Res 31: 2417–2423

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K and Nei M (2004). MEGA3: integrated software for molecular evolutionary analysis and sequence alignment. Brief Bioinf 5: 150–163

    Article  CAS  Google Scholar 

  • Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD and Daniell H (2006). The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 7: 61

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2003). Chloroplast research in the genomic age. Trends Genet 19: 47–56

    Article  PubMed  CAS  Google Scholar 

  • Lemieux C, Otis C and Turmel M (2000). Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403: 649–652

    Article  PubMed  CAS  Google Scholar 

  • Lockhart PJ and Penny D (2005). The place of Amborella within the radiation of angiosperms. Trends Pl Sci 10: 201–202

    Article  CAS  Google Scholar 

  • Mäenpää P, Gonzalez EB, Chen L, Khan MS, Gray JC and Aro EM (2000). The ycf9 (orf 62) gene in the plant chloroplast genome encodes a hydrophobic protein of stromal thylakoid membranes. J Exp Bot 51: 375–382

    Article  PubMed  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL and Kossel H (1995). Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Molec Biol 251: 614–628

    Article  PubMed  CAS  Google Scholar 

  • Manning JE, Wolstenholme DR, Ryan RS, Hunter JA and Richards OC (1971). Circular chloroplast DNA from Euglena gracilis. Proc Natl Acad Sci USA 68: 1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970). Origin of Eukaryotic Cells. Yale University Press, New Haven

    Google Scholar 

  • Martin W, Deusch O, Stawski N, Grunheit N and Goremykin V (2005). Chloroplast genome phylogenetics: why we need independent approaches to plant molecular evolution. Trends Pl Sci 10: 203–209

    Article  CAS  Google Scholar 

  • Martin W and Herrmann RG (1998). Gene transfer from organelles to the nucleus: how much, what happens and why?. Pl Physiol 118: 9–17

    Article  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002). Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M and Kowallik K V (1998). Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Ito Y, Yamauchi R and Obokata J (2005). The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Pl Cell 17: 665–675

    Article  CAS  Google Scholar 

  • Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH and Stern DB (2002). The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Pl Cell 14: 2659–2679

    Article  CAS  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralbl. 25:593–604. English translation. In: Martin W, Kowallik KV (1999) Annotated English translation of Mereschkowsky's 1905 paper ``Über Natur und Ursprung der Chromatophoren im Pflanzenreiche''. Eur J Phycol 34: 287–295

    Google Scholar 

  • Monod C, Takahashi Y, Goldschmidt-Clermont M and Rochaix JD (1994). The chloroplast ycf8 open reading frame encodes a photosystem II polypeptide which maintains photosynthetic activity under adverse growth conditions. EMBO J 13: 2747–2754

    PubMed  CAS  Google Scholar 

  • Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM and Soltis DE (2006). Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Pl Biol 6: 17

    Article  CAS  Google Scholar 

  • Newmaster SG, Fazekas AJ and Ragupathy S (2006). DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Canad J Bot 84: 335–341

    Article  CAS  Google Scholar 

  • O'Brien EA, Zhang Y, Yang LS, Wang E, Marie V, Lang BF and Burger G (2006). GOBASE - a database of organelle and bacterial genome information. Nucl Acids Res 34: D697–D699

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H and Tsunewaki K (2002). Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Molec Genet Genomics 266: 740–746

    Article  CAS  Google Scholar 

  • Ohta N, Matsuzaki M, Misumi O, Miyagishima S Y, Nozaki H, Tanaka K, Shin-I T, Kohara Y and Kuroiwa T (2003). Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10: 67–77

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S-I, Inokuchi H and Ozeki H (1986). Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574

    Article  CAS  Google Scholar 

  • Palmer JD, Nugent JM and Herbon LA (1987). Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci USA 84: 769–773

    Article  PubMed  CAS  Google Scholar 

  • Perry AS and Wolfe KH (2002). Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. J Molec Evol 55: 501–508

    Article  PubMed  CAS  Google Scholar 

  • Pombert JF, Otis C, Lemieux C and Turmel M (2005). The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of Chlorophyte lineages. Molec Biol Evol 22: 1903–1918

    Article  PubMed  CAS  Google Scholar 

  • Race HL, Herrmann RG and Martin W (1999). Why have organelles retained genomes?. Trends Genet 15: 364–370

    Article  PubMed  CAS  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK and Khurana P (2006). The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genet Genomes 3: 49–59

    Article  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK and Khurana P (2007). Rosales sister to Fabales: towards resolving the rozid puzzle. Molec Phylogenet Evol 44: 488–493

    Article  PubMed  CAS  Google Scholar 

  • Reith ME and Munholland J (1995). Complete nucleotide sequence of Porphyra purpurea chloroplast genome. Pl Molec Biol Rep 13: 333–335

    Article  CAS  Google Scholar 

  • Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H, Van de Peer Y (2007) The chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction. Molec Biol Evol 24: 956–968

    Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI and Keeling PJ (2007). The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Molec Biol Evol 24: 54–62

    Article  PubMed  CAS  Google Scholar 

  • Rolland N, Dorne AJ, Amoroso G, Sültemeyer D, Joyard J and Rochaix JD (1997). Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplasts of Chlamydomonas. EMBO J 16: 6713–6726

    Article  PubMed  CAS  Google Scholar 

  • Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD and Daniell H (2006). Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7: 222

    Article  PubMed  CAS  Google Scholar 

  • Sager R and Ishida MR (1963). Chloroplast DNA in Chlamydomonas. Proc Natl Acad Sci USA 50: 725–730

    Article  PubMed  CAS  Google Scholar 

  • Samson N, Bausher MG, Lee SB, Jansen RK, Daniell H (2007) The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Pl Biotech J 5: 339–353

    Google Scholar 

  • Sanchez H, Fester T, Kloska S, Schroder W and Schuster W (1996). Transfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J 15: 2138–2149

    PubMed  CAS  Google Scholar 

  • Sánchez Puerta MV, Bachvaroff TR and Delwiche CF (2005). The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes. DNA Res 12: 151–156

    Article  PubMed  Google Scholar 

  • Sanderson MJ and Driskell AC (2003). The challenge of constructing large phylogenetic trees. Trends Pl Sci 8: 374–379

    Article  CAS  Google Scholar 

  • Saski C, Lee S-B, Daniell H, Wood TC, Tomkins J, Kim HG and Jansen RK (2005). Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Pl Molec Biol 59: 309–322

    Article  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E and Tabata S (1999). Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6: 283–290

    Article  PubMed  CAS  Google Scholar 

  • Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans Roy Soc Lond B Biol Sci 360: 1879–1888

    Google Scholar 

  • Schimper AFW (1883) Über die Entwicklung der Chlorophyllkörner und Farbkörper. Bot. Zeitung 41: 105–114, 121–131, 137–146, 153–162

    Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG and Mache R (2001). The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Pl Molec Biol 45: 307–315

    Article  CAS  Google Scholar 

  • Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG and Maier RM (2002). The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: The role of RNA editing in generating divergence in the process of speciation. Molec Biol Evol 19: 1602–1612

    PubMed  CAS  Google Scholar 

  • Shahid Masood M, Nishikawa T, Fukuoka S, Njenga PK, Tsudzuki T and Kadowaki K-I (2004). The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340: 133–139

    Article  PubMed  CAS  Google Scholar 

  • Shahmuradov IA, Akbarova YY, Solovyev VV and Aliyev JA (2003). Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Pl Molec Biol 52: 923–934

    Article  CAS  Google Scholar 

  • Shimada H and Sugiura M (1991). Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucl Acids Res 19: 983–995

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H and Sugiura M (1986). The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Savolainen V, Hilu K, Qiu YL, Chase MW, Farris JS, Stefanovic S, Rice DW, Palmer JD and Soltis PS (2004). Genome-scale data, angiosperm relationships, and ``ending incongruence'': a cautionary tale in phylogenetics. Trends Pl Sci 9: 477–483

    Article  CAS  Google Scholar 

  • Steane DA (2005). Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res 12: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Stefanovic S, Rice DW and Palmer JD (2004). Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots?. BMC Evol Biol 4: 35

    Article  PubMed  Google Scholar 

  • Steinke D, Vences M, Salzburger W and Meyer A (2005). TaxI: a software tool for DNA barcoding using distance methods. Philos Trans Roy Soc Lond B Biol Sci 360: 1975–1980

    Article  CAS  Google Scholar 

  • Stocking C and Gifford E (1959). Incorporation of thymidine into chloroplasts of Spirogyra. Biochem Biophys Res Commun 1: 159–164

    Article  CAS  Google Scholar 

  • Stoebe B, Martin W and Kowallik K V (1998). Distribution and nomenclature of protein-coding genes in 12 sequenced chloroplast genomes. Pl Molec Biol Rep 16: 243–255

    Article  CAS  Google Scholar 

  • Sugiura C, Kobayashi Y, Aoki S, Sugita C and Sugita M (2003). Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucl Acids Res 31: 5324–5331

    Article  PubMed  CAS  Google Scholar 

  • Suguira M (1992). The chloroplast genome. Plant Mol Biol 19: 149–168

    Article  Google Scholar 

  • Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Muller B, Eichacker LA, Stern DB, Bassi R, Herrmann RG and Wollman FA (2001). The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, psbZ, that participates in PSII supramolecular architecture. Pl Cell 13: 1347–1368

    CAS  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucl Acids Res 35: e14

  • Takahashi Y, Rahire M, Breyton C, Popot JL, Joliot P and Rochaix JD (1996). The chloroplast ycf7 (petL) open reading frame of Chlamydomonas reinhardtii encodes a small functionally important subunit of the cytochrome b6f complex. EMBO J 15: 3498–3506

    PubMed  CAS  Google Scholar 

  • Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, Yang H and Zhu L (2004). A comparison of rice chloroplast genomes. Pl Physiol 135: 412–420

    Article  CAS  Google Scholar 

  • Taylor F (1987). An overview of the status of evolutionary cell symbiosis theories. Ann N Y Acad Sci 503: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Tillich M, Lehwark P, Morton BR and Maier U.G (2006). The evolution of chloroplast RNA editing. Molec Biol Evol 23: 1912–1921

    Article  PubMed  CAS  Google Scholar 

  • Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Amer J Bot 94: 302–312

    Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY and Martin W (2004). Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5: 123–135

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C and Lemieux C (1999). The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA 96: 10248–10253

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C and Lemieux C (2002). The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99: 11275–11280

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C and Lemieux C (2005). The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biol 3: 22

    Article  PubMed  CAS  Google Scholar 

  • Peer Y and Wachter R (1997). Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13: 227–230

    PubMed  Google Scholar 

  • Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K and Sugiura M (1997). Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94: 5967–5972

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T and Sugiura M (1994). Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91: 9794–9798

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG and Boore JL (2005). The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350: 117–128

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Rowe CA and Hasebe M (2004). High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339: 89–97

    Article  PubMed  CAS  Google Scholar 

  • Wolf PG, Rowe CA, Sinclair RB and Hasebe M (2003). Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res 10: 59–65

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW and Palmer JD (1992). Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648–10652

    Article  PubMed  CAS  Google Scholar 

  • Wyman S, Jansen R and Boore J (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252–3255

    Article  PubMed  CAS  Google Scholar 

  • Xie Z and Merchant S (1996). The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem 271: 4632–4639

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Iinuma H, Masuzawa T and Uedal K (1996). Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucl Acids Res 24: 1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Kakehi T, Shima Y, Iinuma H, Masuzawa T and Ueno M (1997). Extensive RNA editing and possible double-stranded structures determining editing sites in the atpB transcripts of hornwort chloroplasts. Nucl Acids Res 25: 4830–4834

    Article  PubMed  CAS  Google Scholar 

  • Yukawa M, Tsudzuki T and Sugiura M (2006). The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Molec Genet Genomics 275: 367–373

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Khurana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, V., Khurana, J.P., Tyagi, A.K. et al. An update on chloroplast genomes. Plant Syst Evol 271, 101–122 (2008). https://doi.org/10.1007/s00606-007-0608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0608-0

Keywords

Navigation