Skip to main content
Log in

Introduction—development and phylogeny of the arthropods: Darwin’s legacy

  • Opinion
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In the present essay, I first recall the genealogical concept of classification settled by Charles Darwin in the Origin of Species. Darwin tightly linked what we now call phylogeny and development. He often insisted to take into account embryonic and larval characters, most often using as examples his favourite animals, the cirripedes. Then I discuss remaining problems, and also perspectives, to address the link between phylogeny and development in the modern terms of molecular and cladistic phylogenetics and of molecular and genetic developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouheif E (1997) Developmental biology and homology: a hierarchical approach. Trends Ecol Evol 12:405–408

    Article  Google Scholar 

  • Abouheif E, Akam M, Dickinson WJ, Holland PW, Meyer A, Patel NH, Raff RA, Roth VL, Wray GA (1997) Homology and developmental genes. Trends Genet 13:432–433

    Article  PubMed  CAS  Google Scholar 

  • Anderson DT (1994) Barnacles. Structure, function, development and evolution. Chapman & Hall, London, p 357

    Google Scholar 

  • Averof M, Akam M (1995) Insect–crustacean relationships: insights from comparative developmental and molecular studies. Philos Trans R Soc Lond B 347:293–303

    Google Scholar 

  • Bolker JA, Raff RA (1996) Developmental genetics and traditional homology. BioEssays 18:489–494

    Article  PubMed  CAS  Google Scholar 

  • Bonnet C (1782) Contemplation de la Nature. J. G. Virchaux & Cie, Hambourg, p 364

    Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity. Molecular genetics and the evolution of animal design. Blackwell, Malden, MA, USA, p 214

    Google Scholar 

  • Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763

    Article  PubMed  CAS  Google Scholar 

  • Cracraft J (2005) Phylogeny and evo–devo: characters, phylogeny and historical analysis of the evolution of development. Zoology 108:345–356

    Article  PubMed  Google Scholar 

  • Damen WG (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    PubMed  CAS  Google Scholar 

  • Damen WG, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci U S A 95:10665–10670

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1851) A monograph on the subclass Cirripedia, with figures of all the species. The Lepadidae or pedunculated cirripedes. Ray Society, London, p 400

    Google Scholar 

  • Darwin C (1854) A monograph on the subclass Cirripedia, with figures of all the species. The Balanidae, the Verrucidae, etc. Ray Society, London, p 684

    Google Scholar 

  • Darwin C (1859) The origin of species. Penguin Books (1968), London, p 477

  • Darwin C (1892) The autobiography of Charles Darwin and selected letters. In: Francis Darwin (ed). Dover Pub Inc., New York, p 3653

  • Darwin C (1909) The foundations of the origin of species. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Dayrat B (2003) The roots of phylogeny: how did Haeckel build his trees? Syst Biol 52:515–527

    PubMed  Google Scholar 

  • de Beer GR (1938) Embryology and evolution. In: de Beer GR (ed) Evolution. Essays on aspects of evolutionary biology. Clarendon, Oxford, pp 57–78

    Google Scholar 

  • de Rosa R, Grenier J, Andreeva T, Cook C, Adoutte A, Akam M, Carroll S, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J (1997) Les gènes homéotiques (gènes Hox) comme traceurs de l’évolution chez les métazoaires : une approche récente, qui s’inscrit dans la démarche Darwinienne. In: Tort P (ed) Pour Darwin. Presses Universitaires de France, Paris, pp 1011–1023

    Google Scholar 

  • Deutsch JS, Mouchel-Vielh E, Quéinnec E, Gibert JM (2004) Genes, segments and tagmata in cirripedes. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. A. A. Balkema, Lisse, The Netherlands, pp 19–42

    Google Scholar 

  • Dickinson WJ (1995) Molecules and morphology: where’s the homology? Trends Genet 11:119–121

    Article  PubMed  CAS  Google Scholar 

  • Dohle W (1997) Myriapod–insect relationships as opposed to an insect–crustacean sister group relationship. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 305–315

    Google Scholar 

  • Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name “Tetraconata” for the monophyletic unit Crustacea + Hexapoda. Ann Soc Entomol Fr 37:85–103

    Google Scholar 

  • Fryer G (1997) A defence of arthropod polyphyly. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 23–33

    Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377

    Article  PubMed  CAS  Google Scholar 

  • Geoffroy Saint-Hilaire E (1830) Principes de philosophie zoologique. In: Le Guyader H (1998) Geoffroy Saint-Hilaire. Un naturaliste visionnaire. Belin, Paris, pp 129–237

  • Gould SJ (2000) The lying stones of Marrakech. Harmony Books, New York, p 508

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine Grundzüge der organishen Formen-Wissenschaft, mechanish begründet durch die von Charles Darwin reformiete Descendenztheorie. Reimer, Berlin, p 680

    Google Scholar 

  • Haeckel E (1874) Histoire de la création des êtres organisés d’après les lois naturelles. Reinwald, Paris, p 680

    Google Scholar 

  • Hennig W (1950) Grundzüge einer Theorie der phylogenetishen Systematik, Berlin. Deutscher Zentralverlag, Berlin

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana, p 263

    Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    PubMed  CAS  Google Scholar 

  • Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci U S A 95:8420–8427

    Article  PubMed  CAS  Google Scholar 

  • Lamarck J-B (1809) Philosophie zoologique. GF-Flammarion (1994), Paris, p 718

  • Lamarck J-B (1820) Système analytique des connaissances positives de l’homme. Presses Universitaires de France (1988), Paris, p 364

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  PubMed  CAS  Google Scholar 

  • Love AC (2002) Darwin and Cirripedia prior to 1846: exploring the origins of the barnacle research. J Hist Biol 35:251–289

    Article  Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    Article  PubMed  CAS  Google Scholar 

  • Manton SM, Anderson DT (1979) Polyphyly and the evolution of arthropods. In: House MR (ed) The origin of major invertebrate groups. Systematics Association, London, pp 269–321

    Google Scholar 

  • McGinnis W, Levine MS, Hafen S, Kuroiwa A, Gehring WJ (1984) A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308:428–433

    Article  PubMed  CAS  Google Scholar 

  • Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17

    PubMed  Google Scholar 

  • Nam J, Nei M (2005) Evolutionary change of the numbers of homeobox genes in bilateral animals. Mol Biol Evol 22:2386–2394

    Article  PubMed  CAS  Google Scholar 

  • Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F (2003) Hexapod origins: monophyletic or paraphyletic? Science 299:1887–1889

    Article  PubMed  CAS  Google Scholar 

  • Nei M (2005) Selectionism and neutralism in molecular evolution. Mol Biol Evol 22:2318–2342

    Article  PubMed  CAS  Google Scholar 

  • Newman WA (1987) Evolution of Cirripedes and their major groups. In: Southward AJ (ed) Barnacle biology. A. A. Balkema, Rotterdam, pp 3–42

    Google Scholar 

  • Nielsen C (1995) Animal evolution. Interrelationships of the living phyla. Oxford University Press, Oxford, p 467

    Google Scholar 

  • Nielsen C, Martinez P (2003) Patterns of gene expression: homology or homocracy? Dev Genes Evol 213:149–154

    PubMed  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–8014

    Article  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York, p 160

    Google Scholar 

  • Philippe H, Chenuil A, Adoutte A (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Development 120:S15–S25

    Google Scholar 

  • Pichaud F, Treisman J, Desplan C (2001) Reinventing a common strategy for patterning the eye. Cell 105:9–12

    Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biotechnol 2:1

    Google Scholar 

  • Richter S (2002) The Tetraconata concept: hexapod–crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2:217–237

    Article  Google Scholar 

  • Scholtz G (2005) Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosci 124:121–143

    Article  Google Scholar 

  • Scott MP, Weiner AJ (1984) Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax and fushi tarazu loci in Drosophila. Proc Natl Acad Sci U S A 81:4115–4119

    Article  PubMed  CAS  Google Scholar 

  • Tassy P (1998) L’arbre à remonter le temps. Diderot Éditeur, Paris, p 388

    Google Scholar 

  • Telford MJ (2000) Turning Hox “signatures” into synapomorphies. Evol Dev 2:360–364

    Article  PubMed  CAS  Google Scholar 

  • Telford MJ, Thomas RH (1995) Systematics: demise of the Atelocerata? Nature 376:123–124

    Article  CAS  Google Scholar 

  • Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci U S A 95:10671–10675

    Article  PubMed  CAS  Google Scholar 

  • Thomson JV (1830) On the cirripedes or barnacles. Zoological Research I:69–85

    Google Scholar 

  • Willmer PG (1990) Invertebrate relationships. Patterns in animal evolution. Cambridge University Press, Cambridge, UK, p 387

Download references

Acknowledgement

I thank Eric Quéinnec for his comments on a previous draft of this manuscript and for signalling Cracraft’s paper. I am grateful to Gerhard Scholtz and to an anonymous referee for careful reading of this manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean S. Deutsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutsch, J.S. Introduction—development and phylogeny of the arthropods: Darwin’s legacy. Dev Genes Evol 216, 357–362 (2006). https://doi.org/10.1007/s00427-006-0089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0089-0

Keywords

Navigation