Skip to main content

EvoDevo and Its Significance for Animal Evolution and Phylogeny

  • Chapter
Evolutionary Developmental Biology of Invertebrates 1

Abstract

Despite Steinböck’s (1963, p. 49) dismissive statement that “ontogeny has only a very limited value for phylogenetic questions,” successful attempts to infer phylogenetic relationships from comparative information about the developmental schedules of animal species are numerous, beginning with two well-known, eighteenth-century examples. One is Thompson’s (1830) discovery of the crustacean nature of barnacles, based on his observation of nauplius larvae metamorphosing into sessile adults (see Chap. XX) whose morphology deviates so strongly from the arthropod ground plan that Linné (1758) placed Lepas (inclusive of barnacles) in his Vermes Testacea (i.e., the shelled mollusks) rather than in his Insecta (a “class” broadly equivalent to present-day Arthropoda). The other example is Kowalewski’s (1866) discovery of the affinities between vertebrates and ascidians, revealed by the presence of the notochord in the larva of the latter (Chap. XX). This does not imply, however, that the relationships between ontogeny and phylogeny are always easy to discover or that these follow simple and perhaps universal principles such as Haeckel’s (1866) “biogenetic law.” Haeckel’s recapitulationist views, indeed, have never been again much in favor since Garstang (1922) demonstrated that many larval adaptations are recent and independent; and a further strong blow to the theory was de Beer’s (1930, 1940) demonstration of the pervasiveness of heterochrony. However, new opportunities to extract phylogenetic information from ontogenetic data have been emerging since the advent of evolutionary developmental biology (Telford and Budd 2003; Cracraft 2005; Minelli 2007, 2009; Minelli et al. 2007).

Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboobaker A, Blaxter M (2003a) Hox gene evolution in nematodes: novelty conserved. Curr Opin Genet Dev 13:593–598

    CAS  PubMed  Google Scholar 

  • Aboobaker AA, Blaxter ML (2003b) Hox gene loss during dynamic evolution of the nematode cluster. Curr Biol 13:37–40

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Popadić A, Kaufman TC (1999) Chelicerate Hox genes and the homology of arthropod segments. Evol Dev 1:77–89

    CAS  PubMed  Google Scholar 

  • Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci U S A 97:4453–4456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Lindford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    CAS  PubMed  Google Scholar 

  • Alberch P (1991) From genes to phenotype: dynamical systems and evolvability. Genetica 84:5–11

    CAS  PubMed  Google Scholar 

  • Alberch P, Gould SJ, Oster G, Wake D (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317

    Google Scholar 

  • Altenberg L (1995) Genome growth and the evolution of the genotype-phenotype map. In: Banzhaf W, Eeckman FH (eds) Evolution and biocomputation. Computational models of evolution. Springer, Berlin, pp 205–259

    Google Scholar 

  • Amirthalingam K, Lorens JB, Saetre BO, Salaneck E, Fjose A (1995) Embryonic expression and DNA-binding properties of zebrafish Pax-6. Biochem Biophys Res Commun 215:122–128

    CAS  PubMed  Google Scholar 

  • Angelini DR, Kaufman TC (2005) Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet 39:95–119

    CAS  PubMed  Google Scholar 

  • Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643

    CAS  PubMed  Google Scholar 

  • Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764

    CAS  PubMed  Google Scholar 

  • Atallah J, Watabe H, Kopp A (2012) Many ways to make a novel structure: a new mode of sex comb development in Drosophila. Evol Dev 14:476–483

    PubMed  Google Scholar 

  • Balavoine G, de Rosa R, Adoutte A (2002) Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol 24:366–373

    CAS  PubMed  Google Scholar 

  • Ball EE, Hayward DC, Saint R, Miller DJ (2004) A simple plan – cnidarians and the origins of developmental mechanisms. Nat Rev Genet 5:567–577

    CAS  PubMed  Google Scholar 

  • Barmina O, Kopp A (2007) Sex-specific expression of a Hox gene associated with rapid morphological evolution. Dev Biol 311:277–286

    CAS  PubMed  Google Scholar 

  • Barrantes G, Eberhard WG (2010) Ontogeny repeats phylogeny in Steatoda and Latrodectus spiders. J Arachnol 38:485–494

    Google Scholar 

  • Beklemishev VN (1963) On the relationships of the Turbellaria to other groups of the animal kingdom. In: Dougherty EC (ed) The lower metazoa. Comparative biology and phylogeny. University of California Press, Berkeley, pp 234–244

    Google Scholar 

  • Bininda-Emonds ORP, Jeffery JE, Coates MI, Richardson MK (2002) From Haeckel to event-pairing: the evolution of developmental sequences. Theory Biosci 121:297–320

    Google Scholar 

  • Blin M, Rabet N, Deutsch JS, Mouchel-Vielh E (2003) Possible implication of Hox genes Abdominal-B and abdominal-A in the specification of genital and abdominal segments in cirripedes. Dev Genes Evol 213:90–96

    PubMed  Google Scholar 

  • Boero F, Gravili C, Pagliara P, Piraino S, Bouillon J, Schmid V (1998) The Cnidarian premises of metazoan evolution: from triploblasty, to coelom formation, to metamery. Ital J Zool 65:5–9

    Google Scholar 

  • Botas J, Auwers L (1996) Chromosomal binding sites of ultrabithorax homeotic proteins. Mech Dev 56:129–138

    CAS  PubMed  Google Scholar 

  • Bourlat SJ, Nielsen C, Economou AD, Telford MJ (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phyl Evol 49:23–31

    CAS  Google Scholar 

  • Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724

    PubMed  Google Scholar 

  • Brigandt I, Love AC (2010) Evolutionary novelty and the evo-devo synthesis: field notes. Evol Biol 37:93–99

    Google Scholar 

  • Brigandt I, Love AC (2012) Conceptualizing evolutionary novelty: moving beyond definitional debates. J Exp Zool (Mol Dev Evol) 318B:417–427

    Google Scholar 

  • Burton PM (2008) Insights from diploblasts; the evolution of mesoderm and muscle. J Exp Zool (Mol Dev Evol) 310B:5–14

    Google Scholar 

  • Butts T, Holland PWH, Ferrier DE (2008) The urbilaterian Super-Hox cluster. Trends Genet 24:259–262

    CAS  PubMed  Google Scholar 

  • Cameron RA, Peterson KJ, Davidson EH (1998) Developmental gene regulation and the evolution of large animal body plans. Am Zool 38:609–620

    Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    CAS  PubMed  Google Scholar 

  • Carroll SB, Gates J, Keys D, Paddock SW, Panganiban GE, Selegue JE, Williams JA (1994) Pattern formation and eyespot determination in butterfly wings. Science 265:109–114

    CAS  PubMed  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity: molecular genetics and the evolution of animal design, 2nd edn. Blackwell, Malden

    Google Scholar 

  • Casares F, Mann RS (1998) Control of antennal versus leg development in Drosophila. Nature 392:723–726

    CAS  PubMed  Google Scholar 

  • Casares F, Mann RS (2001) The ground state of the ventral appendage in Drosophila. Science 293:1477–1480

    CAS  PubMed  Google Scholar 

  • Chagas A Jr, Edgecombe GD, Minelli A (2008) Variability in trunk segmentation in the centipede order Scolopendromorpha: a remarkable new species of Scolopendropsis Brandt (Chilopoda: Scolopendridae) from Brazil. Zootaxa 1888:36–46

    Google Scholar 

  • Chipman AD (2010) Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 32:60–70

    CAS  PubMed  Google Scholar 

  • Chisholm AD, Horvitz HR (1995) Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature 377:52–55

    CAS  PubMed  Google Scholar 

  • Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222

    CAS  PubMed  Google Scholar 

  • Collins AG, Valentine JW (2001) Defining phyla: evolutionary pathways to metazoan body plans. Evol Dev 3:432–442

    CAS  PubMed  Google Scholar 

  • Conway Morris S (1998) Metazoan phylogenies: falling into place or falling to pieces? A paleontological perspective. Curr Opin Genet Dev 8:662–666

    CAS  Google Scholar 

  • Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763

    CAS  PubMed  Google Scholar 

  • Copf T, Rabet N, Celniker SE, Averof M (2003) Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130:5915–5927

    CAS  PubMed  Google Scholar 

  • Cracraft J (2005) Phylogeny and evo-devo: characters, phylogeny and historical analysis of the evolution of development. Zoology 108:345–356

    PubMed  Google Scholar 

  • Cuvier G (1812) Sur un nouveau rapprochement à établir entre les classes qui composent le règne animal. Ann Mus Nat Hist Nat Paris 19:73–84

    Google Scholar 

  • Czerny T, Busslinger M (1995) DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol Cell Biol 15:2858–2871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson EH (1991) Spatial mechanisms of gene regulation in metazoan embryos. Development 113:1–26

    Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic Press, Oxford

    Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    CAS  PubMed  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C-H, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Zj P, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    CAS  PubMed  Google Scholar 

  • Davidson EH, McClay DR, Hood L (2003) Regulatory gene networks and the properties of the developmental process. Proc Natl Acad Sci U S A 100:1475–1480

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Beer GR (1930) Embryology and evolution. Clarendon Press, Oxford

    Google Scholar 

  • de Beer GR (1940) Embryos and ancestors. Clarendon Press, Oxford

    Google Scholar 

  • de Beer GR (1954) The evolution of the metazoa. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen and Unwin, London, pp 24–33

    Google Scholar 

  • de Queiroz K (1985) The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics. Syst Zool 34:280–299

    Google Scholar 

  • de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    CAS  PubMed  Google Scholar 

  • Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H, Prud’homme B, Ferrier DEK, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288

    CAS  PubMed  Google Scholar 

  • Dong PDS, Chu J, Panganiban G (2001) Proximodistal domain specification and interactions in Drosophila developing appendages. Development 128:2365–2372

    CAS  PubMed  Google Scholar 

  • Dray N, Tessmar-Raible K, Le Gouar M, Vibert L, Christodoulou F, Schipany K, Guillou A, Zantke J, Snyman H, Béhague J, Vervoort M, Arendt D, Balavoine G (2010) Hedgehog signaling regulates segment formation in the annelid Platynereis. Science 329:339–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev 1994 Suppl 135–142

    Google Scholar 

  • Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560

    CAS  PubMed  Google Scholar 

  • Duda TF, Palumbi SR (1999) Developmental shifts and species selection in gastropods. Proc Natl Acad Sci U S A 96:10272–10277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    CAS  PubMed  Google Scholar 

  • Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172

    Google Scholar 

  • Eernisse DJ, Albert JS, Anderson FE (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Syst Biol 41:305–330

    Google Scholar 

  • Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG (2012) Oskar predates the evolution of germ plasm in insects. Curr Biol 22:2278–2283

    CAS  PubMed  Google Scholar 

  • Ferrier DEK (2007) Evolution of Hox gene clusters. In: Papageorgiou S (ed) Hox gene expression. Springer, New York, pp 53–67

    Google Scholar 

  • Ferrier DEK (2010) Evolution of Hox complexes. Adv Exp Med Biol 689:91–100

    CAS  PubMed  Google Scholar 

  • Ferrier DEK (2011) Tunicates push the limits of animal evo-devo. BMC Biol 9:3

    PubMed Central  PubMed  Google Scholar 

  • Ferrier DE, Holland PW (2001) Ancient origin of the Hox gene cluster. Nat Rev Genet 2:33–38

    CAS  PubMed  Google Scholar 

  • Ferrier DE, Minguillon C (2003) Evolution of the Hox/ParaHox gene clusters. Int J Dev Biol 47:605–611

    CAS  PubMed  Google Scholar 

  • Fink WL (1982) The conceptual relationship between ontogeny and phylogeny. Paleobiology 8:254–264

    Google Scholar 

  • Finnerty JR, Martindale MQ (1998) The evolution of the Hox cluster: insights from outgroups. Curr Opin Genet Dev 8:681–687

    CAS  PubMed  Google Scholar 

  • Fišer C, Bininda-Emonds ORP, Blejec A, Sket B (2008) Can heterochrony help explain the high morphological diversity within the genus Niphargus (Crustacea: Amphipoda)? Org Divers Evol 8:146–162

    Google Scholar 

  • Fritsch M, Bininda-Emonds ORP, Richter S (2013) Unraveling the origin of Cladocera by identifying heterochrony in the developmental sequences of Branchiopoda. Front Zool 10:35

    PubMed Central  PubMed  Google Scholar 

  • Galis F (2001) Key innovations and radiations. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, San Diego, pp 58–605

    Google Scholar 

  • Galis F, Metz JA (2001) Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J Exp Zool (Mol Dev Evol) 291:195–204

    CAS  Google Scholar 

  • Gao K-Q, Shubin NH (2001) Late Jurassic salamanders from northern China. Nature 410:574–577

    CAS  PubMed  Google Scholar 

  • Garcia-Fernàndez J (2005a) Hox, ParaHox, ProtoHox: facts and guesses. Heredity 94:145–152

    PubMed  Google Scholar 

  • Garcia-Fernàndez J (2005b) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6:881–892

    PubMed  Google Scholar 

  • Garstang W (1922) The theory of recapitulation: a critical restatement of the biogenetic law. J Linnean Soc Zool 35:81–101

    Google Scholar 

  • Gehring WJ (2000) Reply to Meyer-Rochow. Trends Genet 16:245

    CAS  PubMed  Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377

    CAS  PubMed  Google Scholar 

  • Giribet G (2003) Molecules, development and fossils in the study of metazoan evolution: articulata versus Ecdysozoa revisited. Zoology 106:303–326

    Google Scholar 

  • Glardon S, Holland LZ, Gehring WJ, Holland ND (1998) Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125:2701–2710

    CAS  PubMed  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Guralnick RP, Lindberg DR (2001) Reconnecting cell and animal lineages: what do cell lineages tell us about the evolution and development of Spiralia? Evolution 55:1501–1519

    CAS  PubMed  Google Scholar 

  • Haag ES (2014) The same but different: worms reveal the pervasiveness of developmental system drift. PLoS Genet 10:e1004150

    PubMed Central  PubMed  Google Scholar 

  • Hadfield MG, Carpizo-Ituarte EJ, Del Carmen K, Nedved BT (2001) Metamorphic competence, a major adaptive convergence in marine invertebrate larvae. Am Zool 41:1123–1131

    Google Scholar 

  • Hadži J (1955) K diskusiji o novi sistematiki živalstva (Zur Diskussion über das neue zoologische System.) Razprave, Slovenska Akademija Znanosti in Umetnosti, Razrad za Prirodoslovne in Medicinske Vede, Ljubljana 3:175–207 [In Slovenian with German summary]

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie, vol 1, Allgemeine Anatomie der Organismen. Reimer, Berlin

    Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256

    Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    CAS  PubMed  Google Scholar 

  • Hall BK (1997) Phylotypic stage or phantom, is there a highly conserved embryonic stage in vertebrates? Trends Ecol Evol 12:461–463

    CAS  PubMed  Google Scholar 

  • Hall BK (1998) Evolutionary developmental biology, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Hall BK, Kerney R (2012) Levels of biological organization and the origin of novelty. J Exp Zool (Mol Dev Evol) 318B:428–437

    Google Scholar 

  • Hall BK, Olson WM (2003) Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Harris WA (1997) Pax-6: where to be conserved is not conservative. Proc Natl Acad Sci U S A 94:2098–2100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haszprunar G, von Salvini-Plawen L, Rieger RM (1995) Larval plantkotrophy. Acta Zool 76:141–154

    Google Scholar 

  • Hayward DC, Miller DJ, Ball EE (2004) snail expression during embryonic development of the coral Acropora: blurring the diploblast/triploblast divide? Dev Genes Evol 214:257–260

    PubMed  Google Scholar 

  • Heffer A, Xiang J, Pick L (2013) Variation and constraint in Hox gene evolution. Proc Natl Acad Sci U S A 110:2211–2216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hendrikse JL, Parsons TE, Hallgrímsson B (2007) Evolvability as the proper focus of evolutionary developmental biology. Evol Dev 9:93–401

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Henry JJ, Klueg KM, Raff RA (1992) Evolutionary dissociation between cleavage, cell lineage and embryonic axes in sea urchin embryos. Development 114:931–938

    CAS  PubMed  Google Scholar 

  • Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF, The Students of Bioinformatics Computer Labs 2004 and 2005 (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25

    PubMed Central  PubMed  Google Scholar 

  • Holland LZ, Holland ND (1998) Developmental gene expression in amphioxus: new insights into the evolutionary origin of vertebrate brain regions, neural crest, and rostrocaudal segmentation. Am Zool 38:647–658

    CAS  Google Scholar 

  • Holland PWH (2012) Evolution of homeobox genes. WIREs Dev Biol. doi:10.1002/wdev.78

  • Holley SA, Jülich D, Rauch GJ, Geisler R, Nüsslein-Volhard C (2002) her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129:1175–1183

    Google Scholar 

  • Hueber SD, Rauch J, Djordjevic MA, Gunter H, Weiller GF, Frickey T (2013) Analysis of central Hox protein types across bilaterian clades: on the diversification of central Hox proteins from an Antennapedia/Hox7-like protein. Dev Biol 383:175–185

    CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    CAS  PubMed  Google Scholar 

  • Ivanova Kazas OM (2013) Origin of arthropods and of the clades of Ecdysozoa. Russ J Dev Biol 44:221–231

    Google Scholar 

  • Jacobs DK, Wray CG, Wedeen CJ, Kostriken R (2000) Molluscan engrailed expression, serial organization, and shell evolution. Evol Dev 2:340–347

    CAS  PubMed  Google Scholar 

  • Jager M, Murienne J, Clabaut C, Deutsch J, Le Guyader H, Manuel M (2006) Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. Nature 441:506–508

    CAS  PubMed  Google Scholar 

  • Jeffery JE, Bininda-Emonds ORP, Coates MI, Richardson MK (2005) A new technique for identifying sequence heterochrony. Syst Biol 54:230–240

    PubMed  Google Scholar 

  • Jenner RA (2000) Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evol Dev 2:208–221

    CAS  PubMed  Google Scholar 

  • Jiang Y-J, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408:475–479

    CAS  PubMed  Google Scholar 

  • Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026

    CAS  PubMed  Google Scholar 

  • Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–814

    CAS  PubMed  Google Scholar 

  • Kell DB (2002) Genotype–phenotype mapping: genes as computer programs. Trends Genet 18:555–559

    CAS  PubMed  Google Scholar 

  • Khadjeh S, Turetzek N, Pechmann M, Schwager EE, Wimmer EA, Damen WGM, Prpic N-M (2012) Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc Natl Acad Sci U S A 109:4921–4926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kluge AG (1985) Ontogeny and phylogenetic systematics. Cladistics 1:13–27

    Google Scholar 

  • Kmita-Cunisse M, Loosli F, Bierne J, Gehring WJ (1998) Homeobox genes in the ribbonworm Lineus sanguineus: evolutionary implications. Proc Natl Acad Sci U S A 95:3030–3035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kourakis MJ, Martindale MQ (2000) Combined-method phylogenetic analysis of Hox and ParaHox genes of the metazoa. J Exp Zool 288:175–191

    CAS  PubMed  Google Scholar 

  • Kowalewski A (1866) Entwicklungsgeschichte der einfachen Ascidien. Mém Acad Imp Sci St Petersburg (7)10(15):1–19

    Google Scholar 

  • Kozmik Z (2005) Pax genes in eye development and evolution. Curr Opin Genet Dev 15:430–438

    CAS  PubMed  Google Scholar 

  • Kristensen RM (2003) Comparative morphology: do the ultrastructural investigations of Loricifera and Tardigrada support the clade Ecdysozoa? In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the 18th international congress of Zoology. Pensoft, Sofia-Moscow, pp 467–477

    Google Scholar 

  • Kugler JE, Kerner P, Bouquet J-M, Jiang D, Di Gregorio A (2011) Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evol Biol 11:21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kulakova M, Bakalenko N, Nivikova E, Cook CE, Eliseeva E, Steinmetz PRH, Kostyuchenko RP, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217:39–54

    CAS  PubMed  Google Scholar 

  • Laubichler MD (2010) Evolutionary developmental biology offers a significant challenge to the Neo-Darwinian paradigm. In: Ayala FJ, Arp R (eds) Contemporary debates in philosophy of biology. Wiley-Blackwell, New York, pp 199–212

    Google Scholar 

  • Lewis J, Hanisch A, Holder M (2009) Notch signaling, the segmentation clock, and the patterning of vertebrate somites. J Biol 8:44

    PubMed Central  PubMed  Google Scholar 

  • Li HS, Yang JM, Jacobson RD, Pasko D, Sundin O (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev Biol 162:181–194

    CAS  PubMed  Google Scholar 

  • Lichtneckert R, Reichert H (2005) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity 94:465–477

    CAS  PubMed  Google Scholar 

  • Lindberg DR, Ponder WF, Haszprunar G (2004) The Mollusca: relationships and patterns from their first half-billion years. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, Oxford, pp 252–278

    Google Scholar 

  • Linné C (1758) Systema Naturae per regna tria Naturae secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima. Tomus I. Apud Laurentium Salvium, Holmiae

    Google Scholar 

  • Love AC (2008) Explaining evolutionary innovations and novelties: criteria of explanatory adequacy and epistemological prerequisites. Philos Sci 75:874–886

    Google Scholar 

  • Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721

    CAS  PubMed  Google Scholar 

  • Maduro MF (2006) Endomesoderm specification in Caenorhabditis elegans and other nematodes. Bioessays 28:1010–1022

    CAS  PubMed  Google Scholar 

  • Maduro MF, Rothman JH (2002) Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev Biol 246:68–85

    CAS  PubMed  Google Scholar 

  • Mallatt J, Craig CW, Yoder MJ (2012) Nearly complete rRNA genes from 371 animalia: updated structure-based alignment and phylogenetic analysis. Mol Phylogenet Evol 63:604–617

    Google Scholar 

  • Manuel M, Jager M, Murienne J, Clabaut C, Le Guyader H (2006) Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 216:481–491

    PubMed  Google Scholar 

  • Mara A, Schroeder J, Chalouni C, Holley SA (2007) Priming, initiation and synchronization of the segmentation clock by delta D and delta C. Nat Cell Biol 9:523–530

    CAS  PubMed  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (Phylum, Cnidaria; Class, Anthozoa). Development 131:2463–2474

    CAS  PubMed  Google Scholar 

  • Martynov AV (2012) Ontogenetic systematics: the synthesis of taxonomy, phylogenetics, and evolutionary developmental biology. Paleontol J 46:833–864

    Google Scholar 

  • Mastick GS, McKay R, Oligino T, Donovan K, Lopez AJ (1995) Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast. Genetics 139:349–363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maxmen A, Browne WE, Martindale MQ, Giribet G (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437:1144–1148

    CAS  PubMed  Google Scholar 

  • McEdward LR, Janies DA (1997) Relationships among development, ecology and morphology in the evolution of echinoderm larvae and life cycles. Biol J Linn Soc 60:381–400

    Google Scholar 

  • McHugh D, Rouse GW (1998) Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends Ecol Evol 13:182–186

    CAS  PubMed  Google Scholar 

  • McKinney ML (ed) (1988) Heterochrony in evolution: a multidisciplinary approach. Plenum, New York

    Google Scholar 

  • McKinney ML, McNamara KJ (1991) Heterochrony. The evolution of ontogeny. Plenum, New York

    Google Scholar 

  • McNamara KJ (1986) A guide to the nomenclature of heterochrony. J Paleontol 60:4–13

    Google Scholar 

  • McNamara KJ (ed) (1995) Evolutionary change and heterochrony. Wiley, Chichester

    Google Scholar 

  • Meyer-Rochow VB (2000) The eye: monophyletic, polyphyletic or perhaps biphyletic? Trends Genet 16:244–245

    CAS  PubMed  Google Scholar 

  • Mezey JG, Cheverud JM, Wagner GP (2000) Is the genotype-phenotype map modular?: a statistical approach using mouse quantitative trait loci data. Genetics 156:305–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minelli A (2000) Limbs and tail as evolutionarily diverging duplicates of the main body axis. Evol Dev 2:157–165

    CAS  PubMed  Google Scholar 

  • Minelli A (2003a) The development of animal form. Cambridge University Press, Cambridge

    Google Scholar 

  • Minelli A (2003b) The origin and evolution of appendages. Int J Dev Biol 47:573–581

    PubMed  Google Scholar 

  • Minelli A (2007) Invertebrate taxonomy and evolutionary developmental biology. Zootaxa 1668:55–60

    Google Scholar 

  • Minelli A (2009) Perspectives in animal phylogeny and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Minelli A (2010) Evolutionary developmental biology does not offer a significant challenge to the Neo-Darwinian paradigm. In: Ayala FJ, Arp R (eds) Contemporary debates in philosophy of biology. Wiley-Blackwell, New York, pp 213–226

    Google Scholar 

  • Minelli A, Bortoletto S (1988) Myriapod metamerism and arthropod segmentation. Biol J Linn Soc 33:323–343

    Google Scholar 

  • Minelli A, Fusco G (2005) Conserved vs. innovative features in animal body organization. J Exp Zool (Mol Dev Evol) 304B:520–525

    Google Scholar 

  • Minelli A, Fusco G (eds) (2008) Evolving pathways. Key themes in evolutionary developmental biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Minelli A, Fusco G (2013) Homology. In: Kampourakis K (ed) The philosophy of biology: a companion for educators. Springer, Dordrecht, pp 289–322

    Google Scholar 

  • Minelli A, Negrisolo E, Fusco G (2007) Reconstructing animal phylogeny in the light of evolutionary developmental biology. In: Hodkinson TR, Parnell JAN (eds) Reconstructing the tree of life: taxonomy and systematics of species rich taxa. Taylor and Francis – CRC Press, Boca Raton, pp 177–190

    Google Scholar 

  • Minelli A, Chagas-Júnior A, Edgecombe GD (2009) Saltational evolution of trunk segment number in centipedes. Evol Dev 11:318–322

    PubMed  Google Scholar 

  • Moczek AP (2008) On the origins of novelty in development and evolution. Bioessays 30:432–447

    PubMed  Google Scholar 

  • Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moshel SM, Levine M, Collier JR (1998) Shell differentiation and engrailed expression in the Ilyanassa embryo. Dev Genes Evol 208:135–141

    CAS  PubMed  Google Scholar 

  • Müller GB (1990) Developmental mechanisms at the origin of morphological novelty: a side-effect hypothesis. In: Nitecki MH (ed) Evolutionary innovations. University of Chicago Press, Chicago, pp 99–130

    Google Scholar 

  • Müller GB (2008) Evo-devo as a discipline. In: Minelli A, Fusco G (eds) Evolving pathways. Key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 5–30

    Google Scholar 

  • Müller GB, Newman SA (eds) (2003) Origination of organismal form: beyond the gene in developmental and evolutionary biology. MIT Press, Cambridge, MA

    Google Scholar 

  • Müller GB, Newman SA (2005) The innovation triad: an EvoDevo agenda. J Exp Zool (Mol Dev Evol) 304B:487–503

    Google Scholar 

  • Müller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Annu Rev Ecol Syst 22:229–256

    Google Scholar 

  • Müller GB, Wagner GP (2003) Innovation. In: Hall BK, Olson WM (eds) Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge, MA, pp 218–227

    Google Scholar 

  • Mundel P (1979) The centipedes (chilopoda) of the Mazon Creek. In: Nitecki MH (ed) Mazon Creek fossils. Academic, New York, pp 361–378

    Google Scholar 

  • Nederbragt AJ, van Loon AE, Dictus WJAG (2002) Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355

    CAS  PubMed  Google Scholar 

  • Nelson GJ (1978) Ontogeny, phylogeny, paleontology and the biogenetic law. Syst Zool 27:324–345

    Google Scholar 

  • Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C (2003a) Defining phyla: morphological and molecular clues to metazoan evolution. Evol Dev 5:386–393

    PubMed  Google Scholar 

  • Nielsen C (2003b) Proposing a solution to the Articulata-Ecdysozoa controversy. Zool Scr 32:475–482

    Google Scholar 

  • Nielsen C (2008) Ontogeny of the spiralian brain. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 399–416

    Google Scholar 

  • Oates AC, Morelli LG, Ares S (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139:625–639

    CAS  PubMed  Google Scholar 

  • Özbudak EM, Lewis J (2008) Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet 4:e15

    PubMed Central  PubMed  Google Scholar 

  • Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29:66–73

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS, Sherbon B, Grenier JK, Fallon JF, Kimble J, Walker M, Wray GA, Swalla BJ, Martindale MQ, Carroll SB (1997) The origin and evolution of animal appendages. Proc Natl Acad Sci U S A 94:5162–5166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parks AL, Parr BA, Chin J-E, Leaf DS, Raff RA (1988) Molecular analysis of heterochronic changes in the evolution of direct developing sea urchins. J Evol Biol 1:27–44

    Google Scholar 

  • Passamaneck YJ, Halanych KM (2004) Evidence from Hox genes that bryozoans are lophotrochozoans. Evol Dev 6:275–281

    CAS  PubMed  Google Scholar 

  • Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6:893–904

    CAS  PubMed  Google Scholar 

  • Peterson KJ, Cameron RA, Davidson EH (1997) Set-aside cells in maximal indirect development: evolutionary and developmental significance. BioEssays 19:623–631

    Google Scholar 

  • Peterson KJ, Davidson EH (2000) Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci U S A 97:4430–4433

    Google Scholar 

  • Peterson KJ, Irvine SQ, Cameron RA, Davidson EH (2000) Quantitative assessment of Hox complex expression in the indirect development of the polychaete annelid Chaetopterus sp. Proc Natl Acad Sci U S A 97:4487–4492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson T, Müller GB (2013) What is evolutionary novelty? Process versus character based definitions. J Exp Zool (Mol Dev Evol) 320B:345–350

    Google Scholar 

  • Pigliucci M (2008) What, if anything, is an evolutionary novelty? Philos Sci 75:887–898

    Google Scholar 

  • Pigliucci M (2010) Genotype→phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Phil Trans R Soc B 365:557–566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pigliucci M, Müller G (eds) (2010) Evolution: the extended synthesis. MIT Press, Cambridge, MA

    Google Scholar 

  • Pilato G, Binda MG, Biondi O, D’Urso V, Lisi O, Marletta A, Maugeri S, Nobile V, Rappazzo G, Sabella G, Sammartano F, Turrisi G, Viglianisi F (2005) The clade Ecdysozoa, perplexities and questions. Zool Anz 244:43–50

    Google Scholar 

  • Pineda D, Gonzalez J, Callaerts P, Ikeo K, Gehring WJ, Saló E (2000) Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci U S A 97:4525–4529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4:39–49

    CAS  PubMed  Google Scholar 

  • Ponder WF, Lindberg DR (1997) Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool J Linn Soc 119:83–265

    Google Scholar 

  • Prochnik SE, Rokhsar DS, Aboobaker AA (2007) Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol 217:73–77

    CAS  PubMed  Google Scholar 

  • Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105:16614–16619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabinowitz JS, Chan XY, Kingsley EP, Duan Y, Lambert JD (2008) nanos is required in somatic blast cell lineages in the posterior of a mollusc embryo. Curr Biol 18:331–336

    CAS  PubMed  Google Scholar 

  • Raff RA (1996) The shape of life: genes, development and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  • Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol 196:91–106

    CAS  PubMed  Google Scholar 

  • Richmond DL, Oates AC (2012) The segmentation clock: inherited trait or universal design principle? Curr Opin Genet 22:600–606

    CAS  Google Scholar 

  • Rieppel O (1979) Ontogeny and the recognition of primitive character states. Zschr zool Syst Evol Forsch 17:57–61

    Google Scholar 

  • Rivera AS, Weisblat DA (2009) And Lophotrochozoa makes three: Notch/Hes signaling in annelid segmentation. Dev Genes Evol 219:37–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson JM, Sperling EA, Bergum B, Adamski M, Nichols SA, Adamska M, Peterson KJ (2013) The identification of microRNAs in calcisponges: independent evolution of microRNAs in basal metazoans. J Exp Zool (Mol Dev Evol) 320B:84–93

    Google Scholar 

  • Rokas A, Kathirithamby J, Holland PWH (1999) Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera. Insect Mol Biol 8:527–530

    CAS  PubMed  Google Scholar 

  • Sander K (1976) Specification of the basic body plan in insect embryogenesis. Adv Insect Physiol 12:125–238

    Google Scholar 

  • Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CC (eds) Evolution and development. Cambridge University Press, Cambridge, pp 137–159

    Google Scholar 

  • Sarrazin AF, Peel AD, Averof M (2012) A segmentation clock with two-segment periodicity in insects. Science 336:338–341

    CAS  PubMed  Google Scholar 

  • Schierenberg E, Schulze J (2008) Many roads lead to Rome: different ways to construct a nematode. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 261–280

    Google Scholar 

  • Schmidt-Rhaesa A (2004) Ecdysozoa versus Articulata. Sitzungsber Ges Naturforsch Freunde Berl 43:35–49

    Google Scholar 

  • Schmidt-Rhaesa A (2006) Perplexities concerning the Ecdysozoa: a reply to Pilato et al. Zool Anz 244:205–208

    Google Scholar 

  • Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR (1998) The position of the Arthropoda in the phylogenetic system. J Morphol 238:263–285

    Google Scholar 

  • Scholtz G (2002) The Articulata hypothesis – or what is a segment? Org Divers Evol 2:197–215

    Google Scholar 

  • Scholtz G (2003) Is the taxon Articulata obsolete? Arguments in favour of a close relationship between annelids and arthropods. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the 18th international congress of zoology, Athens 2000. Pensoft, Sofia, pp 489–501

    Google Scholar 

  • Schulmeister S, Wheeler WC (2004) Comparative and phylogenetic analysis of developmental sequences. Evol Dev 6:50–57

    PubMed  Google Scholar 

  • Schulze J, Schierenberg E (2011) Evolution of embryonic development in nematodes. EvoDevo 2:18

    PubMed Central  PubMed  Google Scholar 

  • Seaver EC, Paulson D, Irvine SQ, Martindale MQ (2001) The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus does not support a role in body axis segmentation. Dev Biol 236:195–209

    CAS  PubMed  Google Scholar 

  • Seipel K, Schmid V (2005) Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282:14–26

    CAS  PubMed  Google Scholar 

  • Seipel K, Schmid V (2006) Mesodermal anatomies in cnidarian polyps and medusa. Int J Dev Biol 50:589–599

    PubMed  Google Scholar 

  • Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zool (Mol Dev Evol) 306B:575–588

    CAS  Google Scholar 

  • Shankland M (2003) Evolution of body axis segmentation in the bilaterian radiation. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the 18th international congress of zoology. Pensoft, Sofia, pp 187–195

    Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    CAS  PubMed  Google Scholar 

  • Slack JMW, Holland PWH, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492

    CAS  PubMed  Google Scholar 

  • Sly BJ, Snoke MS, Raff RA (2003) Who came first – larvae or adults? Origins of bilaterian metazoan larvae. Int J Dev Biol 47:623–632

    PubMed  Google Scholar 

  • Smith KK (1996) Integration of craniofacial structures during development in mammals. Am Zool 36:70–79

    Google Scholar 

  • Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73:169–186

    Google Scholar 

  • Smith KK (2002) Sequence heterochrony and the evolution of development. J Morphol 252:82–97

    PubMed  Google Scholar 

  • Smith KK (2003) Time’s arrow: heterochrony and the evolution of development. Int J Dev Biol 47:613–621

    PubMed  Google Scholar 

  • Spring J, Yanze N, Middel AM, Stierwald M, Gröger H, Schmid V (2000) The mesoderm specification factor twist in the life cycle of jellyfish. Dev Biol 228:363–375

    CAS  PubMed  Google Scholar 

  • Stauber M, Taubert H, Schmidt-Ott U (2000) Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae). Proc Natl Acad Sci U S A 97:10844–10849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinböck O (1963) Origin and affinities of the lower metazoa: the “aceloid” ancestry of the Eumetazoa. In: Dougherty EC (ed) The lower metazoa. Comparative biology and phylogeny. University of California Press, Berkeley, pp 40–54

    Google Scholar 

  • Steinböck O, Ausserhofer B (1950) Zwei grundverschiedene Entwicklungsabläufe bei einer Art (Prorhynchus stagnatilis M. Sch., Turbellaria). Arch Entw Mech 144:155–177

    Google Scholar 

  • Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865

    CAS  PubMed  Google Scholar 

  • Tabin CJ, Carroll SB, Panganiban G (1999) Out on a limb: parallels in vertebrate and invertebrate limb patterning and the origin of appendages. Am Zool 39:650–663

    CAS  Google Scholar 

  • Tanaka K, Barmina O, Kopp A (2009) Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs. Proc Natl Acad Sci U S A 106:4764–4769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Barmina O, Sanders LE, Arbeitman MN, Kopp A (2011) Evolution of sex-specific traits through changes in HOX dependent doublesex expression. PLoS Biol 9:e1001131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Technau U, Scholz C (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47:531–539

    PubMed  Google Scholar 

  • Telford MJ, Budd GE (2003) The place of phylogeny and cladistics in Evo-Devo research. Int J Dev Biol 47:479–490

    PubMed  Google Scholar 

  • Telford ML, Littlewood DTJ (eds) (2009) Animal evolution: genomes, fossils, and trees. Oxford University Press, Oxford

    Google Scholar 

  • Thamm K, Seaver EC (2008) Notch signaling during larval and juvenile development in the polychaete annelid Capitella sp I. Dev Biol 320:304–318

    CAS  PubMed  Google Scholar 

  • Thomas MB, Freeman G, Martin VJ (1987) The embryonic origin of neurosensory cells and the role of nerve cells in metamorphosis of Phialidium gregarium (Cnidaria, Hydrozoa). Int J Invertebr Reprod Dev 11:265–287

    Google Scholar 

  • Thompson JV (1830) Zoological researches. Memoir IV. On the cirripedes or barnacles; demonstrating their deceptive character; the extraordinary metamorphosis they undergo, and the class of animals to which they undisputably belong. King and Ridings, Cork, pp 69–85

    Google Scholar 

  • Tills O, Rundle SD, Salinger M, Haun T, Pfenninger M, Spicer JI (2011) A genetic basis for intraspecific differences in developmental timing? Evol Dev 13:542–548

    PubMed  Google Scholar 

  • Tomarev SI, Callaerts P, Kos L, Zinovieva R, Halder G, Gehring W, Piatigorsky J (1997) Squid Pax-6 and eye development. Proc Natl Acad Sci U S A 94:2421–2426

    CAS  PubMed Central  PubMed  Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    CAS  PubMed  Google Scholar 

  • Valentine JW, Collins AG (2000) The significance of moulting in ecdysozoan evolution. Evol Dev 2:152–156

    CAS  PubMed  Google Scholar 

  • Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851–859

    CAS  PubMed  Google Scholar 

  • Van de Vyver G (1993) [Classe des Hydrozoaires] Reproduction sexuée – Embryologie. In: Grassé PP (ed) Traité de Zoologie, 3(2). Masson, Paris, pp 417–473

    Google Scholar 

  • Velhagen WA Jr (1997) Analyzing developmental sequences using sequence units. Syst Biol 46:204–210

    PubMed  Google Scholar 

  • Verster A, Ramani A, McKay S, Fraser A (2014) Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet 10:e1004077

    PubMed Central  PubMed  Google Scholar 

  • von Baer KE (1828) Über Entwicklungsgeschichte der Thiere: beobachtung und Reflexion, I. Bornträger, Königsberg

    Google Scholar 

  • Wägele JW, Erikson T, Lockhart P, Misof B (1999) The Ecdysozoa: artifact or monophylum? J Zool Syst Evol Res 37:211–223

    Google Scholar 

  • Wagner GP (2000) What is the promise of developmental evolution? Part I: why is developmental biology necessary to explain evolutionary innovations? J Exp Zool (Mol Dev Evol) 288:95–98

    CAS  Google Scholar 

  • Wagner GP (ed) (2001) The character concept in evolutionary biology. Academic Press, San Diego

    Google Scholar 

  • Wagner A (2011) The origins of evolutionary innovations. A theory of transformative change in living systems. Oxford University Press, Oxford

    Google Scholar 

  • Wagner GP (2014) Homology, genes, and evolutionary innovation. Princeton University Press, Princeton

    Google Scholar 

  • Wagner GP, Zhang J (2011) The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat Rev Genet 12:204–213

    CAS  PubMed  Google Scholar 

  • Wagner GP, Zhang J (2013) On the definition and measurement of pleiotropy. Trends Genet 29:383–384

    PubMed  Google Scholar 

  • Waller TR (1998) Origin of the molluscan class Bivalvia and a phylogeny of the major groups. In: Johnston PA, Haggard JW (eds) Bivalves: an eon of evolution. University of Calgary Press, Calgary, pp 1–45

    Google Scholar 

  • Wanninger A, Haszprunar G (2001) The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entails (Mollusca, Scaphopoda). Evol Dev 3:312–321

    CAS  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    CAS  PubMed  Google Scholar 

  • Whiting MF, Wheeler WC (1994) Insect homeotic transformation. Nature 368:696

    Google Scholar 

  • Whiting M, Carpenter JC, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46:1–68

    CAS  PubMed  Google Scholar 

  • Wiegmann B, Trautwein M, Kim JW, Cassel B, Bertone M, Winterton S, Yeates D (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:34

    PubMed Central  PubMed  Google Scholar 

  • Wiens JJ, Bonett RM, Chippindale PT (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54:91–110

    PubMed  Google Scholar 

  • Wilkins A (2001) The evolution of developmental pathways. Sinauer Associates, Sunderland

    Google Scholar 

  • Wotton KR, Alcaine Colet A, Jaeger J, Jimenez-Guri E (2013) Evolution and expression of BMP genes in flies. Dev Genes Evol 223:335–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wray GA, Raff RA (1991) The evolution of developmental strategy in marine invertebrates. Trends Ecol Evol 6:45–50

    CAS  PubMed  Google Scholar 

  • Zrzavý J (2001) Ecdysozoa versus Articulata: clades, artifacts, prejudices. J Zool Syst Evol Res 39:159–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Minelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Minelli, A. (2015). EvoDevo and Its Significance for Animal Evolution and Phylogeny. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1862-7_1

Download citation

Publish with us

Policies and ethics