Skip to main content

Hexapoda: Comparative Aspects of Later Embryogenesis and Metamorphosis

  • Chapter
Evolutionary Developmental Biology of Invertebrates 5

Abstract

Arthropods are the most species-rich phylum. Within arthropods, species diversity is concentrated in the Hexapoda, which includes on the order of one million described species. The ancestor of hexapods was among the first metazoan lineages to move into a terrestrial environment. Hexapods were also the first lineage to evolve powered flight and remain the only invertebrate lineage to have done so. Hexapods are both exceptionally abundant in many habitats and exceptionally diverse ecologically, with lifestyles ranging from parasitic to agricultural. They also show extensive coevolutionary histories with other taxa, especially flowering plants, which hexapods both pollinate and consume. All of this diversity is achieved within a highly conserved body plan consisting of a segmented head, thorax, and abdomen, which bear an assortment of jointed appendages.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Developmental model species will be referred to by their generic names in this chapter, except when multiple species from a genus are being discussed. Table 3.1 identifies many of the species commonly used in comparative analyses of hexapod development.

  2. 2.

    By convention in arthropods, gene and mRNA names are italicized, while protein names are not. For genes that were named based on mutant phenotypes, capitalization of gene names indicates whether the originally characterized mutant was dominant or recessive. Protein names are capitalized.

References

  • Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249–252

    CAS  PubMed  Google Scholar 

  • Abu-Shaar M, Mann RS (1998) Generation of multiple antagonistic domains along the proximodistal axis during Drosophila leg development. Development 125:3821–3830

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (2000) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227:673–689

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Holtzman S, Kaufman TC (2001) The Drosophila proboscis is specified by two Hox genes, proboscipedia and Sex combs reduced, via repression of leg and antennal appendage genes. Development 128:2803–2814

    CAS  PubMed  Google Scholar 

  • Agata K, Saito Y, Nakajima E (2007) Unifying principles of regeneration I: epimorphosis versus morphallaxis. Dev Growth Differ 49:73–78

    PubMed  Google Scholar 

  • Ahn Y, Zou J, Mitchell PJ (2011) Segment-specific regulation of the Drosophila AP-2 gene during leg and antennal development. Dev Biol 355:336–348

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akam ME (1983) The location of Ultrabithorax transcripts in Drosophila tissue sections. EMBO J 2:2075–2084

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akam M (1998) Hox genes: from master genes to micromanagers. Curr Biol 8:R676–R678

    CAS  PubMed  Google Scholar 

  • Akam ME, Martinez-Arias A (1985) The distribution of Ultrabithorax transcripts in Drosophila embryos. EMBO J 4:1689–1700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aldaz S, Escudero LM, Freeman M (2010) Live imaging of Drosophila imaginal disc development. Proc Natl Acad Sci 107:14217–14222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alexandre C, Baena-Lopez A, Vincent J-P (2014) Patterning and growth control by membrane-tethered Wingless. Nature 505:180–185

    CAS  PubMed  Google Scholar 

  • Ando T, Kojima T, Fujiwara H (2011) Dramatic changes in patterning gene expression during metamorphosis are associated with the formation of a feather-like antenna by the silk moth, Bombyx mori. Dev Biol 357:53–63

    CAS  PubMed  Google Scholar 

  • Angelini DR, Kaufman TC (2004) Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol 271:306–321

    CAS  PubMed  Google Scholar 

  • Angelini DR, Kaufman TC (2005) Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol 283:409–423

    CAS  PubMed  Google Scholar 

  • Angelini DR, Liu PZ, Hughes CL, Kaufman TC (2005) Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Dev Biol 287:440–455

    CAS  PubMed  Google Scholar 

  • Angelini DR, Kikuchi M, Jockusch EL (2009) Genetic patterning in the adult capitate antenna of the beetle Tribolium castaneum. Dev Biol 327:240–251

    CAS  PubMed  Google Scholar 

  • Angelini DR, Smith FW, Aspiras AC, Kikuchi M, Jockusch EL (2012a) Patterning of the adult mandibulate mouthparts in the red flour beetle, Tribolium castaneum. Genetics 190:639–654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Angelini DR, Smith FW, Jockusch EL (2012b) Extent with modification: leg patterning in the beetle Tribolium castaneum and the evolution of serial homologs. G3 Genes Genome Genet 2:235–248

    Google Scholar 

  • Aranda M (2006) Functional analysis of a homolog of the pair-rule gene hairy in the short-germ beetle Tribolium castaneum. Inaugural-Dissertation, Universität zu Köln

    Google Scholar 

  • Aranda M, Marques-Souza H, Bayer T, Tautz D (2008) The role of the segmentation gene hairy in Tribolium. Dev Genes Evol 218:465–477

    PubMed Central  PubMed  Google Scholar 

  • Arnoult L, Su KFY, Manoel D, Minervino C, Magrina J, Gompel N, Prud’homme B (2013) Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. Science 339:1423–1426

    CAS  PubMed  Google Scholar 

  • Aspiras AC, Smith FW, Angelini DR (2011) Sex-specific gene interactions in the patterning of insect genitalia. Dev Biol 360:369–380

    CAS  PubMed  Google Scholar 

  • Atallah J, Vurens G, Mavong S, Mutti A, Hoang D, Kopp A (2014) Sex-specific repression of dachshund is required for Drosophila sex comb development. Dev Biol 386:440–447

    CAS  PubMed  Google Scholar 

  • Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385:627–630

    CAS  PubMed  Google Scholar 

  • Ayala-Camargo A, Anderson AM, Amoyel M, Rodrigues AB, Flaherty MS, Bach EA (2013) JAK/STAT signaling is required for hinge growth and patterning in the Drosophila wing disc. Dev Biol 382:413–426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Azpiazu N, Morata G (2000) Function and regulation of homothorax in the wing imaginal disc of Drosophila. Development 127:2685–2693

    CAS  PubMed  Google Scholar 

  • Baanannou A, Mojica-Vazquez LH, Darras G, Couderc J-L, Cribbs DL, Boube M, Bourbon H-M (2013) Drosophila Distal-less and Rotund bind a single enhancer ensuring reliable and robust bric-a-brac2 expression in distinct limb morphogenetic fields. PLoS Genet 9:e1003581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bando T, Mito T, Maeda Y, Nakamura T, Ito F, Watanabe T, Ohuchi H, Noji S (2009) Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration. Development 136:2235–2245

    CAS  PubMed  Google Scholar 

  • Bando T, Ishimaru Y, Kida T, Hamada Y, Matsuoka Y, Nakamura T, Ohuchi H, Noji S, Mito T (2013) Analysis of RNA-Seq data reveals involvement of JAK/STAT signalling during leg regeneration in the cricket Gryllus bimaculatus. Development 140:959–964

    CAS  PubMed  Google Scholar 

  • Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214

    CAS  PubMed  Google Scholar 

  • Bate CM (1976) Embryogenesis of an insect nervous system I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol 35:107–123

    CAS  PubMed  Google Scholar 

  • Beeman RW (1987) A homoeotic gene cluster in the red flour beetle. Nature 327:247–249

    Google Scholar 

  • Beeman RW, Stuart JJ, Haas MS, Denell RE (1989) Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Dev Biol 133:196–209

    CAS  PubMed  Google Scholar 

  • Beeman RW, Stuart JJ, Brown SJ, Denell RE (1993) Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum. Bioessays 15:439–444

    CAS  PubMed  Google Scholar 

  • Beermann A, Schröder R (2004) Functional stability of the aristaless gene in appendage tip formation during evolution. Dev Genes Evol 214:303–308

    CAS  PubMed  Google Scholar 

  • Beermann A, Jay DG, Beeman RW, Hulskamp M, Tautz D, Jürgens G (2001) The Short antennae gene of Tribolium is required for limb development and encodes the orthologue of the Drosophila Distal-less protein. Development 128:287–297

    CAS  PubMed  Google Scholar 

  • Beermann A, Aranda M, Schröder R (2004) The Sp8 zinc-finger transcription factor is involved in allometric growth of the limbs in the beetle Tribolium castaneum. Development 131:733–742

    CAS  PubMed  Google Scholar 

  • Beermann A, Pruhs R, Lutz R, Schroder R (2011) A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect. Development 138:2793–2805

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bergantiños C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137:1169–1179

    PubMed  Google Scholar 

  • Bergsten SE, Gavis ER (1999) Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development 126:659–669

    CAS  PubMed  Google Scholar 

  • Berlese A (1913) Intorno alle metamorfosi degli insetti. Redia 9:121–136

    Google Scholar 

  • Berns N, Kusch T, Schröder R, Reuter R (2008) Expression, function and regulation of Brachyenteron in the short germband insect Tribolium castaneum. Dev Genes Evol 218:169–179

    CAS  PubMed  Google Scholar 

  • Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS (2002) Combinatorial control of Drosophila eye development by Eyeless, Homothorax, and Teashirt. Genes Dev 16:2415–2427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Biffar L, Stollewerk A (2014) Conservation and evolutionary modifications of neuroblast expression patterns in insects. Dev Biol 388:103–116

    CAS  PubMed  Google Scholar 

  • Bishop SA, Klein T, Arias AM, Couso JP (1999) Composite signalling from Serrate and Delta establishes leg segments in Drosophila through Notch. Development 126:2993–3003

    CAS  PubMed  Google Scholar 

  • Bitsch J (2012) The controversial origin of the abdominal appendage-like processes in immature insects: are they true segmental appendages or secondary outgrowths? (Arthropoda, Hexapoda). J Morphol 273:919–931

    PubMed  Google Scholar 

  • Blair SS (2007) Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu Rev Cell Dev Biol 23:293–319

    CAS  PubMed  Google Scholar 

  • Bolognesi R, Beermann A, Farzana L, Wittkopp N, Lutz R, Balavoine G, Brown SJ, Schröder R (2008a) Tribolium Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. Dev Genes Evol 218:193–202

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bolognesi R, Farzana L, Fischer TD, Brown SJ (2008b) Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol 18:1624–1629

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bomtorin AD, Barchuk AR, Moda LM, Simoes ZLP (2012) Hox gene expression leads to differential hind leg development between honeybee castes. PLoS One 7:e40111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borrell BJ, Krenn HW (2006) Nectar feeding in long-proboscis insects. In: Herrel A, Speck T, Rowe NP (eds) Ecology and biomechanics: a mechanical approach to the ecology and animals and plants. Taylor & Francis/CRC, Boca Raton, pp 185–212

    Google Scholar 

  • Bosch M, Serras F, Martin-Blanco E, Baguna J (2005) JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev Biol 280:73–86

    CAS  PubMed  Google Scholar 

  • Bosch M, Bishop SA, Baguna J, Couso JP (2010) Leg regeneration in Drosophila abridges the normal developmental program. Int J Dev Biol 54:1241–1250

    PubMed Central  PubMed  Google Scholar 

  • Bowsher JH, Nijhout HF (2007) Evolution of novel abdominal appendages in a sepsid fly from histoblasts, not imaginal discs. Evol Dev 9:347–354

    PubMed  Google Scholar 

  • Bowsher JH, Nijhout HF (2009) Partial co-option of the appendage patterning pathway in the development of abdominal appendages in the sepsid fly Themira biloba. Dev Genes Evol 219:577–587

    PubMed Central  PubMed  Google Scholar 

  • Bowsher JH, Ang Y, Ferderer T, Meier R (2013) Deciphering the evolutionary history and developmental mechanisms of a complex sexual ornament: the abdominal appendages of Sepsidae (Diptera): phylogeny and development of abdominal appendages. Evolution 67:1069–1080

    PubMed  Google Scholar 

  • Boxshall GA (2004) The evolution of arthropod limbs. Biol Rev 79:253–300

    PubMed  Google Scholar 

  • Brena C, Liu PZ, Minelli A, Kaufman TC (2005) Abd-B expression in Porcellio scaber Latreille, 1804 (Isopoda: Crustacea): conserved pattern versus novel roles in development and evolution. Evol Dev 7:42–50

    CAS  PubMed  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    CAS  PubMed  Google Scholar 

  • Brisson JA, Ishikawa A, Miura T (2010) Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Mol Biol 19:63–73

    CAS  PubMed  Google Scholar 

  • Broadus J, Doe CQ (1995) Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development 121:3989–3996

    CAS  PubMed  Google Scholar 

  • Brown S, Holtzman S, Kaufman T, Denell R (1999a) Characterization of the Tribolium Deformed ortholog and its ability to directly regulate Deformed target genes in the rescue of a Drosophila Deformed null mutant. Dev Genes Evol 209:389–398

    CAS  PubMed  Google Scholar 

  • Brown SJ, Mahaffey JP, Lorenzen MD, Denell RE, Mahaffey JW (1999b) Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev 1:11–15

    CAS  PubMed  Google Scholar 

  • Brown SJ, Shippy TD, Beeman RW, Denell RE (2002) Tribolium Hox genes repress antennal development in the gnathos and trunk. Mol Phylogenet Evol 24:384–387

    CAS  PubMed  Google Scholar 

  • Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, Carroll SB (2001) The generation and diversification of butterfly eyespot color patterns. Curr Biol 11:1578–1585

    CAS  PubMed  Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Bryant SV, French V, Bryant PJ (1981) Distal regeneration and symmetry. Science 212:993–1002

    CAS  PubMed  Google Scholar 

  • Bryantsev AL, Cripps RM (2009) Cardiac gene regulatory networks in Drosophila. Biochim Biophys Acta (BBA) Gene Regul Mech 1789:343–353

    CAS  Google Scholar 

  • Buceta J, Herranz H, Canela-Xandri O, Reigada R, Sagués F, Milán M (2007) Robustness and stability of the gene regulatory network involved in DV boundary formation in the Drosophila wing. PLoS One 2:e602

    PubMed Central  PubMed  Google Scholar 

  • Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R85–R86

    CAS  PubMed  Google Scholar 

  • Buschbeck EK, Friedrich M (2008) Evolution of insect eyes: tales of ancient heritage, deconstruction, reconstruction, remodeling, and recycling. Evol Educ Outreach 1:448–462

    Google Scholar 

  • Campbell G (2002) Distalization of the Drosophila leg by graded EGF-receptor activity. Nature 418:781–785

    CAS  PubMed  Google Scholar 

  • Campbell G (2005) Regulation of gene expression in the distal region of the Drosophila leg by the Hox11 homolog, C15. Dev Biol 278:607–618

    CAS  PubMed  Google Scholar 

  • Campbell LJ, Crews CM (2008) Wound epidermis formation and function in urodele amphibian limb regeneration. Cell Mol Life Sci 65:73–79

    CAS  PubMed  Google Scholar 

  • Campbell G, Tomlinson A (1995) Initiation of the proximodistal axis in insect legs. Development 121:619–628

    CAS  Google Scholar 

  • Campbell G, Tomlinson A (1998) The roles of the homeobox genes aristaless and Distal-less in patterning the legs and wings of Drosophila. Development 125:4483–4493

    CAS  PubMed  Google Scholar 

  • Campbell G, Weaver T, Tomlinson A (1993) Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell 74:1113–1123

    CAS  PubMed  Google Scholar 

  • Cande JD, Chopra VS, Levine M (2009) Evolving enhancer-promoter interactions within the tinman complex of the flour beetle, Tribolium castaneum. Development 136:3153–3160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GE, Selegue JE, Williams JA (1994) Pattern formation and eyespot determination in butterfly wings. Science 265:109–114

    CAS  PubMed  Google Scholar 

  • Casares F, Mann RS (1998) Control of antennal versus leg development in Drosophila. Nature 392:723–726

    CAS  PubMed  Google Scholar 

  • Casares F, Mann RS (2000) A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Development 127:1499–1508

    CAS  PubMed  Google Scholar 

  • Casares F, Mann RS (2001) The ground state of the ventral appendage in Drosophila. Science 293:1477–1480

    CAS  PubMed  Google Scholar 

  • Cavodeassi F, Diez Del Corral R, Campuzano S, Dominguez M (1999) Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126:4933–4942

    Google Scholar 

  • Cavodeassi F, Modolell J, Gomez-Skarmeta JL (2001) The Iroquois family of genes: from body building to neural patterning. Development 128:2847–2855

    CAS  PubMed  Google Scholar 

  • Chang T, Mazotta J, Dumstrei K, Dumitrescu A, Hartenstein V (2001) Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128:4691–4704

    CAS  PubMed  Google Scholar 

  • Chang C, Dearden P, Akam M (2002) Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Dev Biol 252:100–118

    CAS  PubMed  Google Scholar 

  • Chang C-C, Lee W-C, Cook CE, Lin G-W, Chang T (2006) Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: vasa and Nanos as markers. Int J Dev Biol 50:413–421

    Google Scholar 

  • Chang C, Lin G, Cook CE, Horng S, Lee H, Huang T (2007) Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Dev Genes Evol 217:275–287

    CAS  PubMed  Google Scholar 

  • Chang C-C, Huang T-Y, Cook CE, Lin G-W, Shih C-L, Chen RP-Y (2009) Developmental expression of Apnanos during oogenesis and embryogenesis in the parthenogenetic pea aphid Acyrthosiphon pisum. Int J Dev Biol 53:169–176

    CAS  PubMed  Google Scholar 

  • Chanut F, Heberlein U (1997) Role of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina. Development 124:559–567

    CAS  PubMed  Google Scholar 

  • Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and Eyes Absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91:893–903

    CAS  PubMed  Google Scholar 

  • Chen EH, Christiansen AE, Baker BS (2005) Allocation and specification of the genital disc precursor cells in Drosophila. Dev Biol 281:270–285

    CAS  PubMed  Google Scholar 

  • Chen P, Tong X-L, Li D-D, Liang P-F, Fu M-Y, Li C-F, Hu H, Xiang Z-H, Lu C, Dai F-Y (2013) Fine mapping of a supernumerary proleg mutant (E Cs-l) and comparative expression analysis of the abdominal-A gene in silkworm, Bombyx mori: fine mapping of the silkworm E Cs-l locus. Insect Mol Biol 22:497–504

    CAS  PubMed  Google Scholar 

  • Chesebro J (2013) Mechanisms of segmentation in the American cockroach, Periplaneta americana. D. Phil. Thesis. University of Sussex

    Google Scholar 

  • Chesebro J, Hrycaj S, Mahfooz N, Popadić A (2009) Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus. Dev Biol 329:142–151

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cho K-O, Choi K-W (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396:272–276

    Google Scholar 

  • Cho K-O, Chern J, Izaddoost S, Choi K-W (2000) Novel signaling from the peripodial membrane is essential for eye disc patterning in Drosophila. Cell 103:331–342

    Google Scholar 

  • Chu J, Dong PS, Panganiban G (2002) Limb type-specific regulation of bric a brac contributes to morphological diversity. Development 129:695–704

    CAS  PubMed  Google Scholar 

  • Clark-Hachtel CM, Linz DM, Tomoyasu Y (2013) Insights into insect wing origin provided by functional analysis of vestigial in the red flour beetle, Tribolium castaneum. Proc Natl Acad Sci 110:16951–16956

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen SM (1990) Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature 343:173–177

    CAS  PubMed  Google Scholar 

  • Cohen SM, Jürgens G (1990) Mediation of Drosophila head development by gap-like segmentation genes. Nature 346:482–485

    CAS  PubMed  Google Scholar 

  • Cohen S, Jürgens G (1991) Drosophila headlines. Trends Genet 7:267–272

    CAS  PubMed  Google Scholar 

  • Cohen B, Simcox AA, Cohen SM (1993) Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development 117:597–608

    CAS  PubMed  Google Scholar 

  • Coulcher JF, Telford MJ (2012) Capncollar differentiates the mandible from the maxilla in the beetle Tribolium castaneum. EvoDevo 3:25

    PubMed Central  PubMed  Google Scholar 

  • Coulcher JF, Telford MJ (2013) Comparative gene expression supports the origin of the incisor and molar process from a single endite in the mandible of the red flour beetle Tribolium castaneum. EvoDevo 4:1

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crampton GC (1916) The phylogenetic origin and the nature of the wings of insects according to the paranotal theory. J N Y Entomol Soc 24:1–38

    Google Scholar 

  • Curtis CD, Brisson JA, DeCamillis MA, Shippy TD, Brown SJ, Denell RE (2001) Molecular characterization of Cephalothorax, the Tribolium ortholog of Sex combs reduced. Genesis 30:12–20

    CAS  PubMed  Google Scholar 

  • Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M (1999) twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 3:297–307

    CAS  PubMed  Google Scholar 

  • de Celis Ibeas JM, Bray SJ (2003) Bowl is required downstream of Notch for elaboration of distal limb patterning. Development 130:5943–5952

    PubMed  Google Scholar 

  • de Celis JF, Diaz-Benjumea FJ (2003) Developmental basis for vein pattern variations in insect wings. Int J Dev Biol 47:653–664

    PubMed  Google Scholar 

  • de Celis JF, Tyler DM, de Celis J, Bray SJ (1998) Notch signalling mediates segmentation of the Drosophila leg. Development 125:4617–4626

    PubMed  Google Scholar 

  • Dearden PK (2006) Germ cell development in the honeybee (Apis mellifera); Vasa and Nanos expression. BMC Dev Biol 6:6

    PubMed Central  PubMed  Google Scholar 

  • Dearden P, Akam M (2000) A role for Fringe in segment morphogenesis but not segment formation in the grasshopper, Schistocerca gregaria. Dev Genes Evol 210:329–336

    CAS  PubMed  Google Scholar 

  • DeCamillis MA, ffrench-Constant R (2003) Proboscipedia represses distal signaling in the embryonic gnathal limb fields of Tribolium castaneum. Dev Genes Evol 213:55–64

    PubMed  Google Scholar 

  • DeCamillis MA, Lewis DL, Brown SJ, Beeman RW, Denell RE (2001) Interactions of the Tribolium Sex combs reduced and proboscipedia orthologs in embryonic labial development. Genetics 159:1643–1648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Demontis F, Dahmann C (2007) Apical and lateral cell protrusions interconnect epithelial cells in live Drosophila wing imaginal discs. Dev Dyn 236:3408–3418

    CAS  PubMed  Google Scholar 

  • Desplan C (1997) Eye development: governed by a dictator or a junta? Cell 91:861–864

    CAS  PubMed  Google Scholar 

  • Diaz-Benjumea FJ, Cohen SM (1993) Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75:741–752

    CAS  PubMed  Google Scholar 

  • Diaz-Benjumea FJ, Cohen SM (1995) Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121:4215–4225

    Google Scholar 

  • Diaz-Benjumea FJ, Cohen B, Cohen SM (1994) Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature 372:175–179

    CAS  PubMed  Google Scholar 

  • Doe CQ (1992) Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 116:855–863

    CAS  PubMed  Google Scholar 

  • Doe CQ, Goodman CS (1985a) Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111:193–205

    CAS  PubMed  Google Scholar 

  • Doe CQ, Goodman CS (1985b) Early events in insect neurogenesis: II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol 111:206–219

    CAS  PubMed  Google Scholar 

  • Domínguez M, de Celis JF (1998) A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396:276–278

    PubMed  Google Scholar 

  • Dong Y, Friedrich M (2005) Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol 5:25

    PubMed Central  PubMed  Google Scholar 

  • Dong PDS, Chu J, Panganiban G (2000) Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development 127:209–216

    CAS  PubMed  Google Scholar 

  • Dong PDS, Chu J, Panganiban G (2001) Proximodistal domain specification and interactions in developing Drosophila appendages. Development 128:2365–2372

    CAS  PubMed  Google Scholar 

  • Dong PDS, Dicks JS, Panganiban G (2002) Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development 129:1967–1974

    CAS  PubMed  Google Scholar 

  • Donnell DM, Strand MR (2006) Caste-based differences in gene expression in the polyembryonic wasp Copidosoma floridanum. Insect Biochem Mol Biol 36:141–153

    CAS  PubMed  Google Scholar 

  • Donnell DM, Corley LS, Chen G, Strand MR (2004) Caste determination in a polyembryonic wasp involves inheritance of germ cells. Proc Natl Acad Sci U S A 101:10095–10100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Donoughe S, Nakamura T, Ewen-Campen B, Green DA, Henderson L, Extavour CG (2014) BMP signaling is required for the generation of primordial germ cells in an insect. Proc Natl Acad Sci U S A 111:4133–4138

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doumpas N, Jékely G, Teleman AA (2013) Wnt6 is required for maxillary palp formation in Drosophila. BMC Biol 11:104

    PubMed Central  PubMed  Google Scholar 

  • Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560

    CAS  PubMed  Google Scholar 

  • Duncan DM, Burgess EA, Duncan I (1998) Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev 12:1290–1303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan D, Kiefel P, Duncan I (2010) Control of the spineless antennal enhancer: direct repression of antennal target genes by Antennapedia. Dev Biol 347:82–91

    PubMed Central  CAS  PubMed  Google Scholar 

  • Durston AJ, Jansen HJ, In der Rieden P, Hooiveld MH (2011) Hox collinearity – a new perspective. Int J Dev Biol 55:899–908

    CAS  PubMed  Google Scholar 

  • Edwards KA, Doescher LT, Kaneshiro KY, Yamamoto D (2007) A database of wing diversity in the Hawaiian Drosophila. PLoS One 2:e487

    PubMed Central  PubMed  Google Scholar 

  • Ekas LA, Baeg GH, Flaherty MS, Ayala-Camargo A, Bach EA (2006) JAK/STAT signaling promotes regional specification by negatively regulating wingless expression in Drosophila. Development 133:4721–4729

    CAS  PubMed  Google Scholar 

  • Emerald BS, Curtiss J, Mlodzik M, Cohen SM (2003) distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in Drosophila. Development 130:1171–1180

    CAS  PubMed  Google Scholar 

  • Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC (2012) A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337:860–864

    CAS  PubMed  Google Scholar 

  • Emmons RB, Duncan D, Duncan I (2007) Regulation of the Drosophila distal antennal determinant spineless. Dev Biol 302:412–426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erezyilmaz DF (2006) Imperfect eggs and oviform nymphs: a history of ideas about the origins of insect metamorphosis. Integr Comp Biol 46:795–807

    PubMed  Google Scholar 

  • Erezyilmaz D, Riddiford L, Truman J (2004) Juvenile hormone acts at embryonic molts and induces the nymphal cuticle in the direct-developing cricket. Dev Genes Evol 214:313–323

    CAS  PubMed  Google Scholar 

  • Estella C, Mann RS (2008) Logic of Wg and Dpp induction of distal and medial fates in the Drosophila leg. Development 135:627–636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Estella C, Mann RS (2010) Non-redundant selector and growth-promoting functions of two sister genes, buttonhead and Sp1, in Drosophila leg development. PLoS Genet 6:e1001001

    PubMed Central  PubMed  Google Scholar 

  • Estella C, Voutev R, Mann RS (2012) A dynamic network of morphogens and transcription factors patterns the fly leg. Curr Top Dev Biol 98:173–198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Estrada B, Sánchez-Herrero E (2001) The Hox gene Abdominal-B antagonizes appendage development in the genital disc of Drosophila. Development 128:331–339

    CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG (2012) oskar predates the evolution of germ plasm in insects. Curr Biol 22:2278–2283

    CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Jones TEM, Extavour CG (2013a) Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2:556–568

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Donoughe S, Clarke DN, Extavour CG (2013b) Germ cell specification requires zygotic mechanisms rather than germ plasm in a basally branching insect. Curr Biol 23:835–842

    CAS  PubMed  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    CAS  PubMed  Google Scholar 

  • Feltwell J, Rothschild M (1974) Carotenoids in thirty-eight species of Lepidoptera. J Zool 174:441–465

    Google Scholar 

  • Foronda D, Estrada B, de Navas L, Sánchez-Herrero E (2006) Requirement of abdominal-A and Abdominal-B in the developing genitalia of Drosophila breaks the posterior downregulation rule. Development 133:182–182

    CAS  Google Scholar 

  • French V (1976) Leg regeneration in the cockroach, Blatella germanica. II. Regeneration from a non-congruent tibial graft/host junction. J Embryol Exp Morphol 35:267–301

    Google Scholar 

  • Friedrich M (2006a) Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. Arthropod Struct Dev 35:357–378

    PubMed  Google Scholar 

  • Friedrich M (2006b) Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev Biol 299:310–329

    CAS  PubMed  Google Scholar 

  • Friedrich M, Benzer S (2000) Divergent decapentaplegic expression patterns in compound eye development and the evolution of insect metamorphosis. J Exp Zool 288:39–55

    CAS  PubMed  Google Scholar 

  • Friedrich M, Dong Y, Liu Z, Yang I (2013) Genetic regulation of early eye development in non-dipteran insects. In: Singh A, Kango-Singh M (eds) Molecular genetics of axial patterning, growth and disease in the Drosophila eye. Springer, New York

    Google Scholar 

  • Fristrom D, Gotwals P, Eaton S, Kornberg TB, Sturtevant M, Bier E, Fristrom JW (1994) blistered: a gene required for vein/intervein formation in wings of Drosophila. Development 120:2661–2671

    CAS  PubMed  Google Scholar 

  • Fujii T, Abe H, Katsuma S, Shimada T (2011) Identification and characterization of the fusion transcript, composed of the apterous homolog and a putative protein phosphatase gene, generated by 1.5-Mb interstitial deletion in the vestigial (Vg) mutant of Bombyx mori. Insect Biochem Mol Biol 41:306–312

    CAS  PubMed  Google Scholar 

  • Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415:910–913

    CAS  PubMed  Google Scholar 

  • Galant R, Skeath JB, Paddock S, Lewis DL, Carroll SB (1998) Expression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles. Curr Biol 8:807–813

    CAS  PubMed  Google Scholar 

  • Galindo MI, Bishop SA, Greig S, Couso JP (2002) Leg patterning driven by proximal-distal interactions and EGFR signaling. Science 297:256–259

    CAS  PubMed  Google Scholar 

  • Galindo MI, Bishop SA, Couso JP (2005) Dynamic EGFR-Ras signalling in Drosophila leg development. Dev Dyn 233:1496–1508

    CAS  PubMed  Google Scholar 

  • Galindo MI, Fernández-Garza D, Phillips R, Couso JP (2011) Control of Distal-less expression in the Drosophila appendages by functional 3′ enhancers. Dev Biol 353:396–410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gallant JR, Imhoff VE, Martin A, Savage WK, Chamberlain NL, Pote BL, Peterson C, Smith GE, Evans B, Reed RD, Kronforst MR, Mullen SP (2014) Ancient homology underlies adaptive mimetic diversity across butterflies. Nat Commun 5:4817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gibson MC, Schubiger G (1999) Hedgehog is required for activation of engrailed during regeneration of fragmented Drosophila imaginal discs. Development 126:1591–1599

    CAS  PubMed  Google Scholar 

  • Gibson MC, Schubiger G (2000) Peripodial cells regulate proliferation and patterning of Drosophila imaginal discs. Cell 103:343–350

    CAS  PubMed  Google Scholar 

  • Giorgianni MW, Mann RS (2011) Establishment of medial fates along the proximodistal axis of the Drosophila leg through direct activation of dachshund by Distalless. Dev Cell 20:455–468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giorgianni MW, Patel NH (2004) Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evol Dev 6:402–410

    PubMed  Google Scholar 

  • Godt D, Couderc J-L, Cramton SE, Laski FA (1993) Pattern in the limbs of Drosophila: bric à brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development 119:799–812

    CAS  PubMed  Google Scholar 

  • Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433:481–487

    CAS  PubMed  Google Scholar 

  • González-Crespo S, Morata G (1995) Control of Drosophila adult pattern by extradenticle. Development 121:2117–2125

    PubMed  Google Scholar 

  • Gordon SD, Strand MR (2009) The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation. Dev Genes Evol 219:445–454

    PubMed  Google Scholar 

  • Grbić M, Nagy LM, Strand MR (1998) Development of polyembryonic insects: a major departure from typical insect embryogenesis. Dev Genes Evol 208:69–81

    PubMed  Google Scholar 

  • Greenberg L, Hatini V (2009) Essential roles for lines in mediating leg and antennal proximodistal patterning and generating a stable Notch signaling interface at segment borders. Dev Biol 330:93–104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Greenwood S, Struhl G (1999) Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126:5795–5808

    CAS  PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Grossmann D, Prpic N-M (2012) Egfr signaling regulates distal as well as medial fate in the embryonic leg of Tribolium castaneum. Dev Biol 370:264–272

    CAS  PubMed  Google Scholar 

  • Grossmann D, Scholten J, Prpic N-M (2009) Separable functions of wingless in distal and ventral patterning of the Tribolium leg. Dev Genes Evol 219:469–479

    PubMed Central  PubMed  Google Scholar 

  • Guarner A, Manjón C, Edwards K, Steller H, Suzanne M, Sánchez-Herrero E (2014) The zinc finger homeodomain-2 gene of Drosophila controls Notch targets and regulates apoptosis in the tarsal segments. Dev Biol 385:350–365

    CAS  PubMed  Google Scholar 

  • Gurley KA, Rink JC, Alvarado AS (2008) β-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319:323–327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gustafson EA, Wessel GM (2010) Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays 32:626–637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamilton KGA (1972) The insect wing, part III. Venation of the orders. J Kansas Entomol Soc 45:145–162

    Google Scholar 

  • Hao I, Green RB, Dunaevsky O, Lengyel JA, Rauskolb C (2003) The odd-skipped family of zinc finger genes promotes Drosophila leg segmentation. Dev Biol 263:282–295

    CAS  PubMed  Google Scholar 

  • Hartenstein V, Rudloff E, Campos-Ortega JA (1987) The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster. Roux’s Arch Dev Biol 196:473–485

    Google Scholar 

  • Hayashi S, Hirose S, Metcalfe T, Shirras AD (1993) Control of imaginal cell development by the escargot gene of Drosophila. Development 118:105–115

    CAS  PubMed  Google Scholar 

  • Hayashi Y, Hayashi M, Kobayashi S (2004) Nanos suppresses somatic cell fate in Drosophila germ line. Proc Natl Acad Sci U S A 101:10338–10342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heberlein U, Wolff T, Rubin GM (1993) The TGFβ homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75:913–926

    CAS  PubMed  Google Scholar 

  • Heffer A, Pick L (2013) Conservation and variation in Hox genes: how insect models pioneered the evo-devo field. Annu Rev Entomol 58:161–179

    CAS  PubMed  Google Scholar 

  • Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98

    Google Scholar 

  • Hinton HE (1948) On the origin and function of the pupal stage. Trans R Entomol Soc Lond 99:395–409

    Google Scholar 

  • Hinton HE (1963) The origin and function of the pupal stage. Proc R Entomol Soc Lond Ser A Gen Entomol 38:77–85

    Google Scholar 

  • Hoch H, Wessel A, Asche M, Baum D, Beckmann F, Bräunig P, Ehrig K, Mühlethaler R, Riesemeier H, Staude A, Stelbrink B, Wachmann E, Weintraub P, Wipfler B, Wolff C, Zilch M (2014) Non-sexual abdominal appendages in adult insects challenge a 300 million year old bauplan. Curr Biol 24:R16–R17

    CAS  PubMed  Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision: polarization patterns in nature. Springer, New York

    Google Scholar 

  • Hrycaj S, Mihajlovic M, Mahfooz N, Couso JP, Popadić A (2008) RNAi analysis of nubbin embryonic functions in a hemimetabolous insect, Oncopeltus fasciatus. Evol Dev 10:705–716

    CAS  PubMed  Google Scholar 

  • Hrycaj S, Chesebro J, Popadić A (2010) Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana. Dev Biol 341:324–334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huet PC, Lenoir-Rousseaux JJ (1976) Etude de la mise en place de la patte imaginale de Tenebrio molitor. 1. Analyse expérimentale des processus de restauration au cours de la morphogenése. J Embryol Exp Morphol 35:303–321

    CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2000) RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the Hemipteran head. Development 127:3683–3694

    CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    CAS  PubMed  Google Scholar 

  • Hughes CL, Liu PZ, Kaufman TC (2004) Expression patterns of the rogue Hox genes Hox3/zen and fushi tarazu in the apterygote insect Thermobia domestica. Evol Dev 6:393–401

    CAS  PubMed  Google Scholar 

  • Imms AD (1931) Recent advances in entomology. J. & A. Churchill, London

    Google Scholar 

  • Inoue Y, Mito T, Miyawaki K, Matsushima K, Shinmyo Y, Heanue TA, Mardon G, Ohuchi H, Noji S (2002a) Correlation of expression patterns of homothorax, dachshund, and Distal-less with the proximodistal segmentation of the cricket leg bud. Mech Dev 113:141–148

    CAS  PubMed  Google Scholar 

  • Inoue Y, Niwa N, Mito T, Ohuchi H, Yoshioka H, Noji S (2002b) Expression patterns of hedgehog, wingless, and decapentaplegic during gut formation of Gryllus bimaculatus (cricket). Mech Dev 110:245–248

    CAS  PubMed  Google Scholar 

  • Inoue Y, Miyawaki K, Terasawa T, Matsushima K, Shinmyo Y, Niwa N, Mito T, Ohuchi H, Noji S (2004) Expression patterns of dachshund during head development of Gryllus bimaculatus (cricket). Gene Expr Patterns 4:725–731

    CAS  PubMed  Google Scholar 

  • Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68:243–274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jagla K, Bellard M, Frasch M (2001) A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays 23:125–133

    CAS  PubMed  Google Scholar 

  • Jang CC, Chao JL, Jones N, Yao LC, Bessarab DA, Kuo YM, Jun S, Desplan C, Beckendorf SK, Sun YH (2003) Two Pax genes, eye gone and eyeless, act cooperatively in promoting Drosophila eye development. Development 130:2939–2951

    CAS  PubMed  Google Scholar 

  • Janssen R (2013) Developmental abnormalities in Glomeris marginata (Villers 1789) (Myriapoda: Diplopoda): implications for body axis determination in a myriapod. Naturwissenschaften 100:33–43

    CAS  PubMed  Google Scholar 

  • Janssen R, Damen WG (2008) Diverged and conserved aspects of heart formation in a spider. Evol Dev 10:155–165

    CAS  PubMed  Google Scholar 

  • Janssen R, Eriksson BJ, Budd GE, Akam M, Prpic N-M (2010) Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods. Evol Dev 12:363–372

    CAS  PubMed  Google Scholar 

  • Janssen R, Eriksson BJ, Tait NN, Budd GE (2014) Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool 11:22

    PubMed Central  PubMed  Google Scholar 

  • Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355

    PubMed Central  PubMed  Google Scholar 

  • Jockusch EL, Nagy LM (1997) Insect evolution: how did insect wings originate? Curr Biol 7:R358–R361

    CAS  PubMed  Google Scholar 

  • Jockusch EL, Ober KA (2004) Hypothesis testing in evolutionary developmental biology: a case study from insect wings. J Hered 95:382–396

    CAS  PubMed  Google Scholar 

  • Jockusch EL, Nulsen C, Newfeld SJ, Nagy LM (2000) Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127:1617–1626

    CAS  PubMed  Google Scholar 

  • Jockusch EL, Williams TA, Nagy LM (2004) The evolution of patterning of serially homologous appendages in insects. Dev Genes Evol 214:324–338

    PubMed  Google Scholar 

  • Johnston LA, Schubiger G (1996) Ectopic expression of wingless in imaginal discs interferes with decapentaplegic expression and alters cell determination. Development 122:3519–3529

    CAS  PubMed  Google Scholar 

  • Jory A, Estella C, Giorgianni MW, Slattery M, Laverty TR, Rubin GM, Mann RS (2012) A survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster. Cell Rep 2:1014–1024

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026

    CAS  PubMed  Google Scholar 

  • Kaufman TC, Lewis R, Wakimoto B (1980) Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homoeotic gene complex in polytene chromosome interval 84a-B. Genetics 94:115–133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawakami Y, Esteban CR, Raya M, Kawakami H, Marti M, Dubova I, Belmonte JCI (2006) Wnt/β-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20:3232–3237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kelsh R, Dawson I, Akam M (1993) An analysis of Abdominal-B expression in the locust Schistocerca gregaria. Development 117:293–305

    CAS  PubMed  Google Scholar 

  • Kerber B, Monge I, Mueller M, Mitchell PJ, Cohen SM (2001) The AP-2 transcription factor is required for joint formation and cell survival in Drosophila leg development. Development 128:1231–1238

    CAS  PubMed  Google Scholar 

  • Keys DN, Lewis DL, Selegue JE, Pearson BJ, Goodrich LV, Johnson RL, Gates J, Scott MP, Carroll SB (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283:532–534

    CAS  PubMed  Google Scholar 

  • Khila A, Abouheif E (2008) Reproductive constraint is a developmental mechanism that maintains social harmony in advanced ant societies. Proc Natl Acad Sci U S A 105:17884–17889

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khila A, Abouheif E, Rowe L (2009) Evolution of a novel appendage ground plan in water striders is driven by changes in the Hox gene Ultrabithorax. PLoS Genet 5:e1000583

    PubMed Central  PubMed  Google Scholar 

  • Khila A, Abouheif E, Rowe L (2012) Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science 336:585–589

    CAS  PubMed  Google Scholar 

  • Khila A, Abouheif E, Rowe L (2014) Comparative functional analyses of Ultrabithorax reveal multiple steps and paths to diversification of legs in the adaptive radiation of semi-aquatic insects. Evolution 68:2159–2170

    CAS  PubMed  Google Scholar 

  • Kijimoto T, Moczek AP, Andrews J (2012) Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc Natl Acad Sci U S A 109:20526–20531

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim CW (1959) The differentiation centre inducing the development from larval to adult leg in Pieris brassicae (Lepidoptera). J Embryol Exp Morphol 7:572–582

    CAS  PubMed  Google Scholar 

  • Kim J, Johnson K, Chen HJ, Carroll S, Laughon A (1997) Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388:304–308

    CAS  PubMed  Google Scholar 

  • Kingsolver JG (1995) Viability selection on seasonally polyphenic traits: wing melanin pattern in western white butterflies. Evolution 49:932–941

    Google Scholar 

  • Klag J, Swiatek P (1999) Differentiation of primordial germ cells during embryogenesis of Allacma fusca (L.) (Collembola: Symphypleona). Int J Insect Morphol Embryol 28:161–168

    Google Scholar 

  • Klebes A, Biehs B, Cifuentes F, Kornberg TB (2002) Expression profiling of Drosophila imaginal discs. Genome Biol 3:0038.1–0038.16

    Google Scholar 

  • Klebes A, Sustar A, Kechris K, Li H, Schubiger G, Kornberg TB (2005) Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 132:3753–3765

    CAS  PubMed  Google Scholar 

  • Knüttel H, Fiedler K (2001) Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. J Exp Biol 204:2447–2459

    PubMed  Google Scholar 

  • Koch PB, Behnecke B, french-Constant RH (2000) The molecular basis of melanism and mimicry in a swallowtail butterfly. Curr Biol 10:591–594

    Google Scholar 

  • Kojima T, Tsuji T, Saigo K (2005) A concerted action of a paired-type homeobox gene, aristaless, and a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the Drosophila leg. Dev Biol 279:434–445

    CAS  PubMed  Google Scholar 

  • Konopova B, Akam M (2014) The Hox genes Ultrabithorax and abdominal-A specify three different types of abdominal appendage in the springtail Orchesella cincta (Collembola). EvoDevo 5:2

    PubMed Central  PubMed  Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    CAS  PubMed  Google Scholar 

  • Kukalová-Peck J (1983) Origin of the insect wing and wing articulation from the arthropodan leg. Can J Zool 61:1618–1669

    Google Scholar 

  • Kukalová-Peck J (1992) The “Uniramia” do not exist: the ground plan of the Pterygota as revealed by Permian Diaphanopterodea from Russia (Insecta: Paleodictyopteroidea). Can J Zool 70:236–255

    Google Scholar 

  • Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP, Kronforst MR (2014) doublesex is a mimicry supergene. Nature 507:229–232

    CAS  PubMed  Google Scholar 

  • Kux K, Kiparaki M, Delidakis C (2013) The two Tribolium E(spl) genes show evolutionarily conserved expression and function during embryonic neurogenesis. Mech Dev 130:207–225

    CAS  PubMed  Google Scholar 

  • Lall S, Ludwig MZ, Patel NH (2003) Nanos plays a conserved role in axial patterning outside of the Diptera. Curr Biol 13:224–229

    CAS  PubMed  Google Scholar 

  • Land MF, Nilsson DE (2012) In: Willmer P, Norman D (eds) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Lawrence PA, Morata G (1977) The early development of mesothoracic compartments in Drosophila. An analysis of cell lineage and fate mapping and an assessment of methods. Dev Biol 56:40–51

    CAS  PubMed  Google Scholar 

  • Lebreton G, Faucher C, Cribbs DL, Benassayag C (2008) Timing of Wingless signalling distinguishes maxillary and antennal identities in Drosophila melanogaster. Development 135:2301–2309

    Google Scholar 

  • Lecuit T, Cohen SM (1997) Proximal – distal axis formation in the Drosophila leg. Nature 388:139–145

    CAS  PubMed  Google Scholar 

  • Lecuit T, Brook WJ, Ng M, Calleja M, Sun H, Cohen SM (1996) Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381:387–393

    CAS  PubMed  Google Scholar 

  • Lee JD, Treisman JE (2001) The role of Wingless signaling in establishing the anteroposterior and dorsoventral axes of the eye disc. Development 128:1519–1529

    CAS  PubMed  Google Scholar 

  • Lee AK, Sze CC, Kim ER, Suzuki Y (2013) Developmental coupling of larval and adult stages in a complex life cycle: insights from limb regeneration in the flour beetle, Tribolium castaneum. EvoDevo 4:20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Ozbek S, Bode H, Holstein TW (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330:186–199

    CAS  PubMed  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    CAS  PubMed  Google Scholar 

  • Lewis DL, DeCamillis M, Bennett RL (2000) Distinct roles of the homeotic genes Ubx and abd-A in beetle embryonic abdominal appendage development. Proc Natl Acad Sci 97:4504–4509

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Popadić A (2004) Analysis of nubbin expression patterns in insects. Evol Dev 6:310–324

    CAS  PubMed  Google Scholar 

  • Lin G-W, Cook CE, Miura T, Chang C-C (2014a) Posterior localization of ApVas1 positions the preformed germ plasm in the sexual oviparous pea aphid Acyrthosiphon pisum. EvoDevo 5:18

    PubMed Central  PubMed  Google Scholar 

  • Lin X, Yao Y, Jin M, Li Q (2014b) Characterization of the Distal-less gene homologue, NlDll, in the brown planthopper, Nilaparvata lugens (Stål). Gene 535:112–118

    CAS  PubMed  Google Scholar 

  • Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH (2009) Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci 106:13892–13896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loehlin DW, Werren JH (2012) Evolution of shape by multiple regulatory changes to a growth gene. Science 335:943–947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loehlin DW, Oliveira DCSG, Edwards R, Giebel JD, Clark ME, Cattani MV, van de Zande L, Verhulst EC, Beukeboom LW, Muñoz-Torres M, Werren JH (2010) Non-coding changes cause sex-specific wing size differences between closely related species of Nasonia. PLoS Genet 6:e1000821

    PubMed Central  PubMed  Google Scholar 

  • Lopes CS, Casares F (2010) hth maintains the pool of eye progenitors and its downregulation by Dpp and Hh couples retinal fate acquisition with cell cycle exit. Dev Biol 339:78–88

    CAS  PubMed  Google Scholar 

  • Lynch JA, Desplan C (2010) Novel modes of localization and function of nanos in the wasp Nasonia. Development 137:3813–3821

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JA, Özüak O, Khila A, Abouheif E, Desplan C, Roth S (2011) The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the Holometabola. PLoS Genet 7:e1002029

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lyytinen A, Brakefield PM, Lindstrom L, Mappes J (2004) Does predation maintain eyespot plasticity in Bicyclus anynana? Proc R Soc B Biol Sci 271:279–283

    Google Scholar 

  • Ma C, Zhou Y, Beachy PA, Moses K (1993) The segment polarity gene Hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell 75:927–938

    CAS  PubMed  Google Scholar 

  • Macdonald WP, Martin A, Reed RD (2010) Butterfly wings shaped by a molecular cookie cutter: evolutionary radiation of lepidopteran wing shapes associated with a derived Cut/wingless wing margin boundary system. Evol Dev 12:296–304

    PubMed  Google Scholar 

  • Machida R (1981) External features of embryonic development of a jumping bristletail, Pedetontus unimaculatus Machida (Insecta, Thysanura, Machilidae). J Morphol 168:339–355

    Google Scholar 

  • Machida R (2000) Serial homology of the mandible and maxilla in the jumping bristletail Pedetontus unimaculatus Machida, based on external embryology (Hexapoda: Archaeognatha, Machilidae). J Morphol 245:19–28

    CAS  PubMed  Google Scholar 

  • Mahfooz NS, Li H, Popadić A (2004) Differential expression patterns of the Hox gene are associated with differential growth of insect hind legs. Proc Natl Acad Sci U S A 101:4877–4882

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mahfooz N, Turchyn N, Mihajlovic M, Hrycaj S, Popadić A (2007) Ubx regulates differential enlargement and diversification of insect hind legs. PLoS One 2:e866

    PubMed Central  PubMed  Google Scholar 

  • Mahowald AP (2001) Assembly of the Drosophila germ plasm. Int Rev Cytol 203:187–213

    CAS  PubMed  Google Scholar 

  • Manjón C, Sánchez-Herrero E, Suzanne M (2007) Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis. Nat Cell Biol 9:57–63

    PubMed  Google Scholar 

  • Manton SM (1964) Mandibular mechanisms and the evolution of arthropods. Phil Trans R Soc B 247:1–183

    Google Scholar 

  • Mardon G, Solomon NM, Rubin GM (1994) dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120:3473–3486

    CAS  PubMed  Google Scholar 

  • Martin A, Reed RD (2010) wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Mol Biol Evol 27:2864–2878

    CAS  PubMed  Google Scholar 

  • Martin A, Reed RD (2014) Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev Biol 395:367–378

    CAS  PubMed  Google Scholar 

  • Martin A, McCulloch KJ, Patel NH, Briscoe AD, Gilbert LE, Reed RD (2014) Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. EvoDevo 5:1–14

    Google Scholar 

  • Maruzzo D, Bortolin F (2013) Arthropod regeneration. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution: molecules, development, morphology. Springer, Heidelberg

    Google Scholar 

  • Masucci JD, Miltenberger RJ, Hoffmann FM (1990) Pattern-specific expression of the Drosophila decapentaplegic gene in imaginal disks is regulated by 3′ cis-regulatory elements. Genes Dev 4:2011–2023

    CAS  PubMed  Google Scholar 

  • Masumoto M, Yaginuma T, Niimi T (2009) Functional analysis of Ultrabithorax in the silkworm, Bombyx mori, using RNAi. Dev Genes Evol 219:437–444

    CAS  PubMed  Google Scholar 

  • Matsuda S, Shimmi O (2012) Directional transport and active retention of Dpp/BMP create wing vein patterns in Drosophila. Dev Biol 366:153–162

    CAS  PubMed  Google Scholar 

  • Matsuda S, Yoshiyama N, Künnapuu-Vulli J, Hatakeyama M, Shimmi O (2013) Dpp/BMP transport mechanism is required for wing venation in the sawfly Athalia rosae. Insect Biochem Mol Biol 43:466–473

    CAS  PubMed  Google Scholar 

  • Maurel-Zaffran C, Treisman JE (2000) pannier acts upstream of wingless to direct dorsal eye disc development in Drosophila. Development 127:1007–1016

    CAS  PubMed  Google Scholar 

  • Maves L, Schubiger G (1998) A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling. Development 125:115–124

    CAS  PubMed  Google Scholar 

  • McClure KD, Schubiger G (2005) Developmental analysis and squamous morphogenesis of the peripodial epithelium in Drosophila imaginal discs. Development 132:5033–5042

    CAS  PubMed  Google Scholar 

  • McClure KD, Sustar A, Schubiger G (2008) Three genes control the timing, the site and the size of blastema formation in Drosophila. Dev Biol 319:68–77

    PubMed Central  CAS  PubMed  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    CAS  PubMed  Google Scholar 

  • McGinnis N, Ragnhildstveit E, Veraksa A, McGinnis W (1998) A cap‘n’collar protein isoform contains a selective Hox repressor function. Development 125:4553–4564

    Google Scholar 

  • McKay DJ, Lieb JD (2013) A common set of DNA regulatory elements shapes Drosophila appendages. Dev Cell 27:306–318

    CAS  PubMed  Google Scholar 

  • McKay DJ, Estella C, Mann RS (2009) The origins of the Drosophila leg revealed by the cis-regulatory architecture of the Distalless gene. Development 136:61–71

    PubMed Central  CAS  PubMed  Google Scholar 

  • McNeill H, Yang CH, Brodsky M, Ungos J, Simon MA (1997) mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border in the Drosophila eye. Genes Dev 11:1073–1082

    CAS  PubMed  Google Scholar 

  • Medved V, Huang ZY, Popadic A (2014) Ubx promotes corbicular development in Apis mellifera. Biol Lett 10:20131021

    PubMed Central  PubMed  Google Scholar 

  • Meinhardt H (1983) Cell determination boundaries as organizing regions for secondary embryonic fields. Dev Biol 96:375–385

    CAS  PubMed  Google Scholar 

  • Merrill VK, Turner FR, Kaufman TC (1987) A genetic and developmental analysis of mutations in the Deformed locus in Drosophila melanogaster. Dev Biol 122:379–395

    CAS  PubMed  Google Scholar 

  • Mirth C, Akam M (2002) Joint development in the Drosophila leg: cell movements and cell populations. Dev Biol 246:391–406

    CAS  PubMed  Google Scholar 

  • Mito T, Inoue Y, Kimura S, Miyawaki K, Niwa N, Shinmyo Y, Ohuchi H, Noji S (2002) Involvement of hedgehog, wingless, and dpp in the initiation of proximodistal axis formation during the regeneration of insect legs, a verification of the modified boundary model. Mech Dev 114:27–35

    CAS  PubMed  Google Scholar 

  • Mito T, Ronco M, Uda T, Nakamura T, Ohuchi H, Noji S (2008) Divergent and conserved roles of extradenticle in body segmentation and appendage formation, respectively, in the cricket Gryllus bimaculatus. Dev Biol 313:67–79

    CAS  PubMed  Google Scholar 

  • Mito T, Shinmyo Y, Kurita K, Nakamura T, Ohuchi H, Noji S (2011) Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 138:3823–3833

    CAS  PubMed  Google Scholar 

  • Mitten EK, Jing D, Suzuki Y (2012) Matrix metalloproteinases (MMPs) are required for wound closure and healing during larval leg regeneration in the flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 42:854–864

    CAS  PubMed  Google Scholar 

  • Mittmann B, Scholtz G (2001) Distal-less expression in embryos of Limulus polyphemus (Chelicerata, Xiphosura) and Lepisma saccharina (Insecta, Zygentoma) suggests a role in the development of mechanoreceptors, chemoreceptors, and the CNS. Dev Genes Evol 211:232–243

    CAS  PubMed  Google Scholar 

  • Miyawaki K, Inoue Y, Mito T, Fujimoto T, Matsushima K, Shinmyo Y, Ohuchi H, Noji S (2002) Expression patterns of aristaless in developing appendages of Gryllus bimaculatus (cricket). Mech Dev 113:181–184

    CAS  PubMed  Google Scholar 

  • Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S (2004) Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130

    CAS  PubMed  Google Scholar 

  • Mlodzik M, Fjose A, Gehring WJ (1988) Molecular structure and spatial expression of a homeobox gene from the labial region of the Antennapedia-complex. EMBO J 7:2569–2578

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moczek AP, Nagy LM (2005) Diverse developmental mechanisms contribute to different levels of diversity in horned beetles. Evol Dev 7:175–185

    PubMed  Google Scholar 

  • Moczek AP, Rose DJ (2009) Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci 106:8992–8997

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mohler J (1993) Genetic regulation of CNC expression in the pharyngeal primordia of Drosophila blastoderm embryos. Roux’s Arch Dev Biol 202:214–223

    Google Scholar 

  • Montagne J, Groppe J, Guillemin K, Krasnow MA, Gehring WJ, Affolter M (1996) The Drosophila Serum Response Factor gene is required for the formation of intervein tissue of the wing and is allelic to blistered. Development 122:2589–2597

    CAS  PubMed  Google Scholar 

  • Monteiro A, Chen B, Ramos DM, Oliver JC, Tong X, Guo M, WANG W-K, Fazzino L, Kamal F (2013) Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies. J Exp Zool B Mol Dev Evol 320:321–331

    CAS  PubMed  Google Scholar 

  • Nagata T, Suzuki Y, Ueno K, Kokubo H, Xu X, Hui C, Hara W, Fukuta M (1996) Developmental of the Bombyx Antennapedia homologue and homeotic changes in the Nc mutant. Genes Cells 1:555–568

    CAS  PubMed  Google Scholar 

  • Nakamura T, Mito T, Tanaka Y, Bando T, Ohuchi H, Noji S (2007) Involvement of canonical Wnt/Wingless signaling in the determination of the positional values within the leg segment of the cricket Gryllus bimaculatus: wnt signaling in cricket leg regeneration. Dev Growth Differ 49:79–88

    Google Scholar 

  • Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008a) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72

    CAS  PubMed  Google Scholar 

  • Nakamura T, Mito T, Miyawaki K, Ohuchi H, Noji S (2008b) EGFR signaling is required for re-establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph. Dev Biol 319:46–55

    CAS  PubMed  Google Scholar 

  • Nakao H (1999) Isolation and characterization of a Bombyx vasa-like gene. Dev Genes Evol 209:312–316

    CAS  PubMed  Google Scholar 

  • Nakao H, Hatakeyama M, Lee JM, Shimoda M, Kanda T (2006) Expression pattern of Bombyx vasa-like (BmVLG) protein and its implications in germ cell development. Dev Genes Evol 216:94–99

    CAS  PubMed  Google Scholar 

  • Nakao H, Matsumoto T, Oba Y, Niimi T, Yaginuma T (2008) Germ cell specification and early embryonic patterning in Bombyx mori as revealed by nanos orthologues. Evol Dev 10:546–554

    CAS  PubMed  Google Scholar 

  • Namigai EKO, Suzuki Y (2012) Functional conservation and divergence of BMP ligands in limb development and lipid homeostasis of holometabolous insects. Evol Dev 14:296–310

    CAS  PubMed  Google Scholar 

  • Natori K, Tajiri R, Furukawa S, Kojima T (2012) Progressive tarsal patterning in the Drosophila by temporally dynamic regulation of transcription factor genes. Dev Biol 361:450–462

    CAS  PubMed  Google Scholar 

  • Negre B, Ruiz A (2007) HOM-C evolution in Drosophila: is there a need for Hox gene clustering? Trends Genet 23:55–59

    CAS  PubMed  Google Scholar 

  • Nellen D, Burke R, Struhl G, Basler K (1996) Direct and long-range action of a DPP morphogen gradient. Cell 85:357–368

    CAS  PubMed  Google Scholar 

  • Neumann CJ, Cohen SM (1996) A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development 122:3477–3485

    CAS  PubMed  Google Scholar 

  • Neumann CJ, Cohen SM (1997) Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124:871–880

    CAS  PubMed  Google Scholar 

  • Ng M, Diaz-Benjumea FJ, Cohen SM (1995) nubbin encodes a POU-domain protein required for proximal-distal patterning in the Drosophila wing. Development 121:589–599

    CAS  PubMed  Google Scholar 

  • Nicholson DB, Ross AJ, Mayhew PJ (2014) Fossil evidence for key innovations in the evolution of insect diversity. Proc R Soc B: Biol Sci 281:20141823

    Google Scholar 

  • Niimi T, Kuwayama H, Yaginuma T (2005) Larval RNAi applied to the analysis of postembryonic development in the ladybird beetle, Harmonia axyridis. J Insect Biotechnol Sericology 74:95–102

    CAS  Google Scholar 

  • Nijhout HF (1980) Pattern formation on lepidopteran wings: determination of an eyespot. Dev Biol 80:267–274

    CAS  PubMed  Google Scholar 

  • Nijhout HF (1991) The development and evolution of butterfly wing patterns. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Nijhout HF (1994) Symmetry systems and compartments in Lepidopteran wings: the evolution of a patterning mechanism. Development 1994:225–233

    Google Scholar 

  • Niwa N, Saito M, Ohuchi H, Yoshioka H, Noji S (1997) Correlation between Distal-less expression patterns and structures of appendages in development of the two-spotted cricket, Gryllus bimaculatus. Zool Sci 14:115–125

    Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    CAS  PubMed  Google Scholar 

  • Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayashi S (2010) Evolutionary origin of the insect wing via integration of two developmental modules: new hypothesis of insect wing evolution. Evol Dev 12:168–176

    CAS  PubMed  Google Scholar 

  • Ober KA, Jockusch EL (2006) The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Dev Biol 294:391–405

    CAS  PubMed  Google Scholar 

  • Ohde T, Masumoto M, Morita-Miwa M, Matsuura H, Yoshioka H, Yaginuma T, Niimi T (2009a) Vestigial and scalloped in the ladybird beetle: a conserved function in wing development and a novel function in pupal ecdysis. Insect Mol Biol 18:571–581

    CAS  PubMed  Google Scholar 

  • Ohde T, Masumoto M, Yaginuma T, Niimi T (2009b) Embryonic RNAi analysis in the firebrat, Thermobia domestica (Zygentoma: Lepismatidae): Distal-less is required to form caudal filament. J Insect Biotechnol Sericology 78:99–105

    CAS  Google Scholar 

  • Ohde T, Yaginuma T, Niimi T (2011) Nymphal RNAi analysis reveals novel function of scalloped in antenna, cercus and caudal filament formation in the firebrat, Thermobia domestica. J Insect Biotechnol Sericology 80(3):101–108

    CAS  Google Scholar 

  • Ohde T, Yaginuma T, Niimi T (2013) Insect morphological diversification through the modification of wing serial homologs. Science 340:495–498

    CAS  PubMed  Google Scholar 

  • Oka K, Yoshiyama N, Tojo K, Machida R, Hatakeyama M (2010) Characterization of abdominal appendages in the sawfly, Athalia rosae (Hymenoptera), by morphological and gene expression analyses. Dev Genes Evol 220:53–59

    PubMed  Google Scholar 

  • Olesen J, Richter S, Scholtz G (2001) The evolutionary transformation of phyllopodous to stenopodous limbs in the Branchiopoda (Crustacea)-is there a common mechanism for early limb development in arthropods? Int J Dev Biol 45:869–876

    CAS  PubMed  Google Scholar 

  • Oliver JC, Tong X-L, Gall LF, Piel WH, Monteiro A (2012) A single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression. PLoS Genet 8:e1002893

    PubMed Central  CAS  PubMed  Google Scholar 

  • Page-McCaw A, Serano J, Sante JM, Rubin GM (2003) Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell 4:95–106

    CAS  PubMed  Google Scholar 

  • Palopoli MF, Patel NH (1998) Evolution of the interaction between Hox genes and a downstream target. Curr Biol 8:587–590

    CAS  PubMed  Google Scholar 

  • Panganiban G, Nagy L, Carroll SB (1994) The role of the Distal-less gene in the development and evolution of insect limbs. Curr Biol 4:671–675

    CAS  PubMed  Google Scholar 

  • Panganiban G, Sebring A, Nagy L, Carroll S (1995) The development of crustacean limbs and the evolution of arthropods. Science 270:1363–1366

    CAS  PubMed  Google Scholar 

  • Papa R, Martin A, Reed RD (2008) Genomic hotspots of adaptation in butterfly wing pattern evolution. Curr Opin Genet Dev 18:559–564

    CAS  PubMed  Google Scholar 

  • Papayannopoulos V, Tomlinson A, Panin VM, Rauskolb C, Irvine KD (1998) Dorsal-ventral signaling in the Drosophila eye. Science 281:2031–2034

    CAS  PubMed  Google Scholar 

  • Pappu KS, Mardon G (2004) Genetic control of retinal specification and determination in Drosophila. Int J Dev Biol 48:913–924

    PubMed  Google Scholar 

  • Passalacqua KD, Hrycaj S, Mahfooz N, Popadić A (2010) Evolving expression patterns of the homeotic gene Scr in insects. Int J Dev Biol 54:897–904

    CAS  PubMed  Google Scholar 

  • Pattatucci AM, Otteson DC, Kaufman TC (1991) A functional and structural analysis of the Sex combs reduced locus of Drosophila melanogaster. Genetics 129:423–441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paul L, Wang S-H, Manivannan SN, Bonanno L, Lewis S, Austin CL, Simcox A (2013) Dpp-induced Egfr signaling triggers postembryonic wing development in Drosophila. Proc Natl Acad Sci 110:5058–5063

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paulus H (2000) Phylogeny of the Myriapoda–Crustacea–Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208

    Google Scholar 

  • Pavlopoulos A, Akam M (2011) Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis. Proc Natl Acad Sci 108:2855–2860

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M (2009) Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci 106:13897–13902

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peel AD, Chipman AD, Akam M (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet 6:905–916

    CAS  PubMed  Google Scholar 

  • Petersen CP, Reddien PW (2008) Smed-βcatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319:327–330

    Google Scholar 

  • Peterson MD, Rogers BT, Popadić A, Kaufman TC (1999) The embryonic expression pattern of labial, homeotic complex genes and the teashirt homologue in an apterygote insect. Dev Genes Evol 209:77–90

    CAS  PubMed  Google Scholar 

  • Pignoni F, Zipursky SL (1997) Induction of Drosophila eye development by decapentaplegic. Development 124:271–278

    CAS  PubMed  Google Scholar 

  • Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91:881–891

    CAS  PubMed  Google Scholar 

  • Popadić A, Panganiban G, Rusch D, Shear WA, Kaufman TC (1998) Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Dev Genes Evol 208:142–150

    PubMed  Google Scholar 

  • Posnien N, Bucher G (2010) Formation of the insect head involves lateral contribution of the intercalary segment, which depends on Tc-labial function. Dev Biol 338:107–116

    CAS  PubMed  Google Scholar 

  • Posnien N, Bashasab F, Bucher G (2009) The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev 11:480–488

    CAS  PubMed  Google Scholar 

  • Prpic NM, Damen WG (2004) Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 214:296–302

    PubMed  Google Scholar 

  • Prpic N-M, Damen WGM (2009) Notch-mediated segmentation of the appendages is a molecular phylotypic trait of the arthropods. Dev Biol 326:262–271

    CAS  PubMed  Google Scholar 

  • Prpic N-M, Tautz D (2003) The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 260:97–112

    CAS  PubMed  Google Scholar 

  • Prpic N-M, Wigand B, Damen W, Klingler M (2001) Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol 211:467–477

    CAS  PubMed  Google Scholar 

  • Prpic N-M, Janssen R, Wigand B, Klingler M, Damen WG (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140

    CAS  PubMed  Google Scholar 

  • Prud’homme B, Gompel N, Rokas A, Kassner VA, Williams TM, Yeh S-D, True JR, Carroll SB (2006) Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440:1050–1053

    PubMed  Google Scholar 

  • Pueyo JI, Couso JP (2008) The 11-aminoacid long Tarsal-less peptides trigger a cell signal in Drosophila leg development. Dev Biol 324:192–201

    CAS  PubMed  Google Scholar 

  • Pueyo JI, Couso JP (2011) Tarsal-less peptides control Notch signalling through the Shavenbaby transcription factor. Dev Biol 355:183–193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci 105:16614–16619

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pultz MA, Diederich RJ, Cribbs DL, Kaufman TC (1988) The proboscipedia locus of the Antennapedia complex: a molecular and genetic analysis. Genes Dev 2:901–920

    CAS  PubMed  Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and aniridia in humans. Science 265:785–789

    CAS  PubMed  Google Scholar 

  • Rauskolb C (2001) The establishment of segmentation in the Drosophila leg. Development 128:4511–4521

    CAS  PubMed  Google Scholar 

  • Rauskolb C, Irvine KD (1999) Notch-mediated segmentation and growth control of the Drosophila leg. Dev Biol 210:339–350

    CAS  PubMed  Google Scholar 

  • Reed RD (2004) Evidence for Notch-mediated lateral inhibition in organizing butterfly wing scales. Dev Genes Evol 214:43–46

    CAS  PubMed  Google Scholar 

  • Reed RD, Nagy LM (2005) Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development. Evol Dev 7:301–311

    CAS  PubMed  Google Scholar 

  • Reed RD, Serfas MS (2004) Butterfly wing pattern evolution is associated with changes in a Notch/Distal-less temporal pattern formation process. Curr Biol 14:1159–1166

    CAS  PubMed  Google Scholar 

  • Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NL, Kronforst MR, Chen R, Halder G, Nijhout HF, McMillan WO (2011) optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333:1137–1141

    CAS  PubMed  Google Scholar 

  • Refki NP, Armisén D, Crumière AJJ, Viala S, Khila A (2014) Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait. Dev Biol 392:441–453

    PubMed Central  CAS  PubMed  Google Scholar 

  • Regulski M, Harding K, Kostriken R, Karch F, Levine M, McGinnis W (1985) Homeo box genes of the Antennapedia and Bithorax complexes of Drosophila. Cell 43:71–80

    CAS  PubMed  Google Scholar 

  • Regulski M, McGinnis N, Chadwick R, McGinnis W (1987) Developmental and molecular analysis of Deformed; a homeotic gene controlling Drosophila head development. EMBO J 6:767–777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reifegerste R, Moses K (1999) Genetics of epithelial polarity and pattern in the Drosophila retina. Bioessays 21:275–285

    CAS  PubMed  Google Scholar 

  • Restrepo S, Zartman JJ, Basler K (2014) Coordination of patterning and growth by the morphogen DPP. Curr Biol 24:R245–R255

    CAS  PubMed  Google Scholar 

  • Riek EF, Kukalová-Peck J (1984) A new interpretation of dragonfly wing venation based upon early upper Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states in pterygote wings. Can J Zool 62:1150–1166

    Google Scholar 

  • Rogers BT, Peterson MD, Kaufman TC (1997) Evolution of the insect body plan as revealed by the Sex combs reduced expression pattern. Development 124:149–157

    CAS  PubMed  Google Scholar 

  • Rogers BT, Peterson MD, Kaufman TC (2002) The development and evolution of insect mouthparts as revealed by the expression patterns of gnathocephalic genes. Evol Dev 4:96–110

    CAS  PubMed  Google Scholar 

  • Ronco M, Uda T, Mito T, Minelli A, Noji S, Klingler M (2008) Antenna and all gnathal appendages are similarly transformed by homothorax knock-down in the cricket Gryllus bimaculatus. Dev Biol 313:80–92

    CAS  PubMed  Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917

    PubMed  Google Scholar 

  • Rost MM, Flakus A, Klag J (2005) Primordial germ cell differentiation in natural and manipulated twin embryos of Thermobia domestica (Insecta: Zygentoma). Ann Entomol Soc Am 98:108–112

    Google Scholar 

  • Saenko SV, Marialva MS, Beldade P (2011) Involvement of the conserved Hox gene Antennapedia in the development and evolution of a novel trait. EvoDevo 2:9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Salazar J, Pletcher MT, Bennett RL, Brown SJ, Dandamudi TJ, Denell RE, Doctor JS (1996) The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene. Dev Genes Evol 206:237–246

    CAS  PubMed  Google Scholar 

  • Santos AC, Lehmann R (2004) Germ cell specification and migration in Drosophila and beyond. Curr Biol 14:R578–R589

    CAS  PubMed  Google Scholar 

  • Sato K, Matsunaga TM, Futahashi R, Kojima T, Mita K, Banno Y, Fujiwara H (2008) Positional cloning of a Bombyx wingless locus flügellos (fl) reveals a crucial role for fringe that is specific for wing morphogenesis. Genetics 179:875–885

    PubMed Central  CAS  PubMed  Google Scholar 

  • Savard J, Marques-Souza H, Aranda M, Tautz D (2006) A segmentation gene in Tribolium produces a polycistronic mRNA that codes for multiple conserved peptides. Cell 126:559–569

    CAS  PubMed  Google Scholar 

  • Schaeper ND, Wimmer EA, Prpic N-M (2013) Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev Genes Evol 223:341–350

    PubMed  Google Scholar 

  • Schinko JB, Kreuzer N, Offen N, Posnien N, Wimmer EA, Bucher G (2008) Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol 317:600–613

    CAS  PubMed  Google Scholar 

  • Schmitt-Engel C, Cerny AC, Schoppmeier M (2012) A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Dev Biol 364:224–235

    CAS  PubMed  Google Scholar 

  • Schnellhammer I (2012) Evolution früher Faktoren der Segmentierungskaskade: Funktionelle Untersuchungen in Bruchidius, Tribolium und Oncopeltus. Ph.D. Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg

    Google Scholar 

  • Scholtz G, Mittmann B, Gerberding M (1998) The pattern of Distal-less expression in the mouthparts of crustaceans, myriapods and insects: new evidence for a gnathobasic mandible and the common origin of Mandibulata. Int J Dev Biol 42:801–810

    CAS  PubMed  Google Scholar 

  • Schröder R (2006) vasa mRNA accumulates at the posterior pole during blastoderm formation in the flour beetle Tribolium castaneum. Dev Genes Evol 216:277–283

    PubMed  Google Scholar 

  • Schubiger M, Sustar A, Schubiger G (2010) Regeneration and transdetermination: the role of wingless and its regulation. Dev Biol 347:315–324

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sewell W, Williams T, Cooley J, Terry M, Ho R, Nagy L (2008) Evidence for a novel role for dachshund in patterning the proximal arthropod leg. Dev Genes Evol 218:293–305

    PubMed  Google Scholar 

  • Shah MV, Namigai EK, Suzuki Y (2011) The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum. Mech Dev 128:342–358

    CAS  PubMed  Google Scholar 

  • Sharma PP, Schwager EE, Extavour CG, Giribet G (2012) Evolution of the chelicera: a dachshund domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev 14:522–533

    PubMed  Google Scholar 

  • Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG (2013) Distal-less and dachshund pattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestman Phalangium opilio (Opiliones). Evol Dev 15:228–242

    CAS  PubMed  Google Scholar 

  • Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG (2014) Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. EvoDevo 5:3

    PubMed Central  PubMed  Google Scholar 

  • Shbailat SJ, Abouheif E (2013) The wing-patterning network in the wingless castes of myrmicine and formicine species is a mix of evolutionarily labile and non-labile genes. J Exp Zool B Mol Dev Evol 320B:74–83

    Google Scholar 

  • Shbailat SJ, Khila A, Abouheif E (2010) Correlations between spatiotemporal changes in gene expression and apoptosis underlie wing polyphenism in the ant Pheidole morrisi: network architecture underlying polyphenism. Evol Dev 12:580–591

    CAS  PubMed  Google Scholar 

  • Shimmi O, Matsuda S, Hatakeyama M (2014) Insights into the molecular mechanisms underlying diversified wing venation among insects. Proc R Soc B: Biol Sci 281:20140264

    Google Scholar 

  • Shinmyo Y, Mito T, Uda T, Nakamura T, Miyawaki K, Ohuchi H, Noji S (2006) brachyenteron is necessary for morphogenesis of the posterior gut but not for anteroposterior axial elongation from the posterior growth zone in the intermediate-germband cricket Gryllus bimaculatus. Development 133:4539–4547

    CAS  PubMed  Google Scholar 

  • Shippy TD, Guo J, Brown SJ, Beeman RW, Denell RE (2000) Analysis of maxillopedia expression pattern and larval cuticular phenotype in wild-type and mutant Tribolium. Genetics 155:721–731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shippy TD, Ronshaugen M, Cande J, He J, Beeman RW, Levine M, Brown SJ, Denell RE (2008) Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Dev Genes Evol 218:127–139

    PubMed Central  PubMed  Google Scholar 

  • Shippy TD, Yeager SJ, Denell RE (2009) The Tribolium spineless ortholog specifies both larval and adult antennal identity. Dev Genes Evol 219:45–51

    PubMed Central  PubMed  Google Scholar 

  • Shirai LT, Saenko SV, Keller RA, Jerónimo MA, Brakefield PM, Descimon H, Wahlberg N, Beldade P (2012) Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. BMC Evol Biol 12:21

    PubMed Central  PubMed  Google Scholar 

  • Simonnet F, Moczek AP (2011) Conservation and diversification of gene function during mouthpart development in Onthophagus beetles. Evol Dev 13:280–289

    PubMed  Google Scholar 

  • Singer JB, Harbecke R, Kusch T, Reuter R, Lengyel JA (1996) Drosophila brachyenteron regulates gene activity and morphogenesis in the gut. Development 122:3707–3718

    CAS  PubMed  Google Scholar 

  • Smith FW, Jockusch EL (2014) Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum. Dev Biol 395:182–197

    CAS  PubMed  Google Scholar 

  • Smith FW, Angelini DR, Jockusch EL (2014) A functional genetic analysis in flour beetles (Tenebrionidae) reveals an antennal identity specification mechanism active during metamorphosis in Holometabola. Mech Dev 132:13–27

    CAS  PubMed  Google Scholar 

  • Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK (2009) Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16:797–809

    PubMed Central  CAS  PubMed  Google Scholar 

  • Snodgrass RE (1930) Insects: their ways and means of living. Smithson Sci Ser 5:1–362

    Google Scholar 

  • Snodgrass RE (1931) Morphology of the insect abdomen. Part I. General structure of the abdomen and its appendages. Smithson Misc Collect 85:1–128

    Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Sotillos S, De Celis JF (2005) Interactions between the Notch, EGFR, and decapentaplegic signaling pathways regulate vein differentiation during Drosophila pupal wing development. Dev Dyn 232:738–752

    CAS  PubMed  Google Scholar 

  • Stansbury MS, Moczek AP (2014) The function of Hox and appendage-patterning genes in the development of an evolutionary novelty, the Photuris firefly lantern. Proc R Soc B Biol Sci 281:20133333

    Google Scholar 

  • Stark J, Bonacum J, Remsen J, DeSalle R (1999) The evolution and development of dipteran wing veins: a systematic approach. Annu Rev Entomol 44:97–129

    CAS  PubMed  Google Scholar 

  • Stauber M, Jackle H, Schmidt-Ott U (1999) The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci 96:3786–3789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stern DL (1998) A role of Ultrabithorax in morphological differences between Drosophila species. Nature 396:463–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stern DL (2003) The Hox gene Ultrabithorax modulates the shape and size of the third leg of Drosophila by influencing diverse mechanisms. Dev Biol 256:355–366

    CAS  PubMed  Google Scholar 

  • Stern DL, Orgogozo V (2009) Is genetic evolution predictable? Science 323:746–751

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stevens KE, Mann RS (2007) A balance between two nuclear localization sequences and a nuclear export sequence governs Extradenticle subcellular localization. Genetics 175:1625–1636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Struhl G (1982) Genes controlling segmental specification in the Drosophila thorax. Proc Natl Acad Sci U S A 79:7380–7384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stuart JJ, Brown SJ, Beeman RW, Denell RE (1991) A deficiency of the homeotic complex of the beetle Tribolium. Nature 350:72–74

    CAS  PubMed  Google Scholar 

  • Suzanne M, Estella C, Calleja M, Sánchez-Herrero E (2003) The hernandez and fernandez genes of Drosophila specify eye and antenna. Dev Biol 260:465–483

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Palopoli M (2001) Evolution of insect abdominal appendages: are prolegs homologous or convergent traits? Dev Genes Evol 211:486–492

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Squires DC, Riddiford LM (2009) Larval leg integrity is maintained by Distal-less and is required for proper timing of metamorphosis in the flour beetle, Tribolium castaneum. Dev Biol 326:60–67

    PubMed Central  CAS  PubMed  Google Scholar 

  • Svácha P (1992) What are and what are not imaginal discs: reevaluation of some basic concepts (Insecta, Holometabola). Dev Biol 154:101–117

    PubMed  Google Scholar 

  • Svendsen PC, Formaz-Preston A, Leal SM, Brook WJ (2009) The Tbx20 homologs midline and H15 specify ventral fate in the Drosophila melanogaster leg. Development 136:2689–2693

    CAS  PubMed  Google Scholar 

  • Tajiri R, Misaki K, Yonemura S, Hayashi S (2011) Joint morphology in the insect leg: evolutionary history inferred from Notch loss-of-function phenotypes in Drosophila. Development 138:4621–4626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takagi A, Kurita K, Terasawa T, Nakamura T, Bando T, Moriyama Y, Mito T, Noji S, Ohuchi H (2012) Functional analysis of the role of eyes absent and sine oculis in the developing eye of the cricket Gryllus bimaculatus. Dev Growth Differ 54:227–240

    CAS  PubMed  Google Scholar 

  • Takashima S, Murakami R (2001) Regulation of pattern formation in the Drosophila hindgut by wg, hh, dpp, and en. Mech Dev 101:79–90

    CAS  PubMed  Google Scholar 

  • Tanaka K, Truman JW (2005) Development of the adult leg epidermis in Manduca sexta: contribution of different larval cell populations. Dev Genes Evol 215:78–89

    PubMed  Google Scholar 

  • Tanaka K, Truman JW (2007) Molecular patterning mechanism underlying metamorphosis of the thoracic leg in Manduca sexta. Dev Biol 305:539–550

    CAS  PubMed  Google Scholar 

  • Tanaka K, Barmina O, Sanders LE, Arbeitman MN, Kopp A (2011) Evolution of sex-specific traits through changes in HOX-dependent doublesex expression. PLoS Biol 9:e1001131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric J-L, Barthel A et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    CAS  PubMed  Google Scholar 

  • Toegel JP, Wimmer EA, Prpic N-M (2009) Loss of spineless function transforms the Tribolium antenna into a thoracic leg with pretarsal, tibiotarsal, and femoral identity. Dev Genes Evol 219:53–58

    PubMed  Google Scholar 

  • Tomita S, Kikuchi A (2009) Abd-B suppresses lepidopteran proleg development in posterior abdomen. Dev Biol 328:403–409

    CAS  PubMed  Google Scholar 

  • Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578

    CAS  PubMed  Google Scholar 

  • Tomoyasu Y, Wheeler SR, Denell RE (2005) Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature 433:643–647

    CAS  PubMed  Google Scholar 

  • Tomoyasu Y, Arakane Y, Kramer KJ, Denell RE (2009) Repeated co-options of exoskeleton formation during wing-to-elytron evolution in beetles. Curr Biol 19:2057–2065

    CAS  PubMed  Google Scholar 

  • Treisman JE (1999) A conserved blueprint for the eye? Bioessays 21:843–850

    CAS  PubMed  Google Scholar 

  • Treisman JE, Rubin GM (1995) wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development 121:3519–3527

    CAS  PubMed  Google Scholar 

  • True JR (2003) Insect melanism: the molecules matter. Trends Ecol Evol 18:640–647

    Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    CAS  PubMed  Google Scholar 

  • True JR, Edwards KA, Yamamoto D, Carroll SB (1999) Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns. Curr Biol 9:1382–1391

    CAS  PubMed  Google Scholar 

  • Trueman JWH (1990) Comment—evolution of insect wings: a limb exite plus endite model. Can J Zool 68:1333–1335

    Google Scholar 

  • Truman JW, Ball EE (1998) Patterns of embryonic neurogenesis in a primitive wingless insect, the silverfish, Ctenolepisma longicaudata: comparison with those seen in flying insects. Dev Genes Evol 208:357–368

    CAS  PubMed  Google Scholar 

  • Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452

    CAS  PubMed  Google Scholar 

  • Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol 47:467–500

    CAS  PubMed  Google Scholar 

  • Tsai Y, Yao J, Chen P, Posakony JW, Barolo S, Kim J, Henry Sun Y (2007) Upd/Jak/STAT signaling represses wg transcription to allow initiation of morphogenetic furrow in Drosophila eye development. Dev Biol 306:760–771

    CAS  PubMed  Google Scholar 

  • Turchyn N, Chesebro J, Hrycaj S, Couso JP, Popadić A (2011) Evolution of nubbin function in hemimetabolous and holometabolous insect appendages. Dev Biol 357:83–95

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ueno K, Hui CC, Fukuta M, Suzuki Y (1992) Molecular analysis of the deletion mutants in the E homeotic complex of the silkworm Bombyx mori. Development 114:555–563

    CAS  PubMed  Google Scholar 

  • Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc R Soc B: Biol Sci 275:369–376

    Google Scholar 

  • Ungerer P, Eriksson BJ, Stollewerk A (2011) Neurogenesis in the water flea Daphnia magna (Crustacea, Branchiopoda) suggests different mechanisms of neuroblast formation in insects and crustaceans. Dev Biol 357:42–52

    CAS  PubMed  Google Scholar 

  • Vachon G, Cohen B, Pfeifle C, McGuffin ME, Botas J, Cohen SM (1992) Homeotic genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell 71:437–450

    CAS  PubMed  Google Scholar 

  • van der Zee M, Stockhammer O, von Levetzow C, da Fonseca RN, Roth S (2006) Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect. Proc Natl Acad Sci 103:16307–16312

    PubMed Central  PubMed  Google Scholar 

  • Wang C-W, Sun YH (2012) Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila. Development 139:3413–3421

    CAS  PubMed  Google Scholar 

  • Wang S-H, Simcox A, Campbell G (2000) Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development. Genes Dev 14:2271–2276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warren RW, Nagy L, Selegue J, Gates J, Carroll S (1994) Evolution of homeotic gene regulation and function in flies and butterflies. Nature 372:458–461

    CAS  PubMed  Google Scholar 

  • Wasik BR, Moczek AP (2012) pangolin expression influences the development of a morphological novelty: beetle horns. Genesis 50:404–414

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wasik BR, Rose DJ, Moczek AP (2010) Beetle horns are regulated by the Hox gene, Sex combs reduced, in a species- and sex-specific manner. Evol Dev 12:353–362

    CAS  PubMed  Google Scholar 

  • Werner T, Koshikawa S, Williams TM, Carroll SB (2010) Generation of a novel wing colour pattern by the wingless morphogen. Nature 464:1143–1148

    CAS  PubMed  Google Scholar 

  • Wheat CW, Wahlberg N (2013) Phylogenomic insights into the Cambrian explosion, the colonization of land and the evolution of flight in Arthropoda. Syst Biol 62:93–109

    PubMed  Google Scholar 

  • Wheeler SR, Carrico ML, Wilson BA, Brown SJ, Skeath JB (2003) The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification. Development 130:4373–4381

    CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1973) Evolution of insect wings and flight. Nature 246:127–129

    Google Scholar 

  • Wigglesworth VB (1976) The evolution of insect flight. In: Rainey RC (ed) Insect flight. Blackwell Scientific, Oxford

    Google Scholar 

  • Williams JA, Paddock SW, Carroll SB (1993) Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development 117:571–584

    CAS  PubMed  Google Scholar 

  • Wirz J, Fessler LI, Gehring WJ (1986) Localization of the Antennapedia protein in Drosophila embryos and imaginal discs. EMBO J 5:3327–3334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 20:65–71

    CAS  PubMed  Google Scholar 

  • Wu J, Cohen SM (1999) Proximodistal axis formation in the Drosophila leg: subdivision into proximal and distal domains by Homothorax and Distal-less. Development 126:109–117

    CAS  PubMed  Google Scholar 

  • Wu J, Cohen SM (2002) Repression of Teashirt marks the initiation of wing development. Development 129:2411–2418

    CAS  PubMed  Google Scholar 

  • Xiang H, Li MW, Guo JH, Jiang JH, Huang YP (2011) Influence of RNAi knockdown for E-complex genes on the silkworm proleg development. Arch Insect Biochem Physiol 76:1–11

    CAS  PubMed  Google Scholar 

  • Yamada A, Martindale MQ, Fukui A, Tochinai S (2010) Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora. Dev Biol 339:212–222

    CAS  PubMed  Google Scholar 

  • Yamamoto DS, Sumitani M, Tojo K, Lee JM, Hatakeyama M (2004) Cloning of a decapentaplegic orthologue from the sawfly, Athalia rosae (Hymenoptera), and its expression in the embryonic appendages. Dev Genes Evol 214:128–133

    CAS  PubMed  Google Scholar 

  • Yan S-J, Zartman JJ, Zhang M, Scott A, Shvartsman SY, Li WX (2009) Bistability coordinates activation of the EGFR and DPP pathways in Drosophila vein differentiation. Mol Syst Biol 5:278

    PubMed Central  PubMed  Google Scholar 

  • Yang X, ZarinKamar N, Bao R, Friedrich M (2009a) Probing the Drosophila retinal determination gene network in Tribolium (I): the early retinal genes dachshund, eyes absent and sine oculis. Dev Biol 333:202–214

    CAS  PubMed  Google Scholar 

  • Yang X, Weber M, ZarinKamar N, Posnien N, Friedrich F, Wigand B, Beutel R, Damen WG, Bucher G, Klingler M (2009b) Probing the Drosophila retinal determination gene network in Tribolium (II): the Pax6 genes eyeless and twin of eyeless. Dev Biol 333:215–227

    CAS  PubMed  Google Scholar 

  • Yasukochi Y, Ashakumary LA, Wu C, Yoshido A, Nohata J, Mita K, Sahara K (2004) Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect. Dev Genes Evol 214:606–614

    PubMed  Google Scholar 

  • Yeh S-D, Liou S-R, True JR (2006) Genetics of divergence in male wing pigmentation and courtship behavior between Drosophila elegans and D. gunungcola. Heredity (Edinb) 96:383–395

    Google Scholar 

  • Yokoyama H, Ogino H, Stoick-Cooper CL, Grainger RM, Moon RT (2007) Wnt/β-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 306:170–178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshiyama N, Tojo K, Hatakeyama M (2013) A survey of the effectiveness of non-cell autonomous RNAi throughout development in the sawfly, Athalia rosae (Hymenoptera). J Insect Physiol 59:400–407

    CAS  PubMed  Google Scholar 

  • Yue C, Hua B (2010) Are abdominal prolegs serially homologous with the thoracic legs in Panorpidae (Insecta: Mecoptera)? Embryological evidence. J Morphol 271:1366–1373

    PubMed  Google Scholar 

  • ZarinKamar N, Yang X, Bao R, Friedrich F, Beutel R, Friedrich M (2011) The Pax gene eyegone facilitates repression of eye development in Tribolium. EvoDevo 2:1–15

    Google Scholar 

  • Zecca M, Struhl G (2002) Control of growth and patterning of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development 129:1369–1376

    Google Scholar 

  • Zecca M, Struhl G (2007) Recruitment of cells into the Drosophila wing primordium by a feed-forward circuit of vestigial autoregulation. Development 134:3001–3010

    CAS  PubMed  Google Scholar 

  • Zecca M, Basler K, Struhl G (1995) Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121:2265–2278

    CAS  PubMed  Google Scholar 

  • Zera AJ (2004) The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions. Integr Comp Biol 43:607–616

    Google Scholar 

  • Zhang H, Shinmyo Y, Mito T, Miyawaki K, Sarashina I, Ohuchi H, Noji S (2005) Expression patterns of the homeotic genes Scr, Antp, Ubx, and abd-A during embryogenesis of the cricket Gryllus bimaculatus. Gene Expr Patterns 5:491–502

    CAS  PubMed  Google Scholar 

  • Zhang XG, Siveter DJ, Waloszek D, Maas A (2007) An epipodite-bearing crown-group crustacean from the lower Cambrian. Nature 449:595–598

    CAS  PubMed  Google Scholar 

  • Zhurov V, Terzin T, Grbić M (2004) Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 432:764–769

    CAS  PubMed  Google Scholar 

  • Zirin JD, Mann RS (2007) Nubbin and Teashirt mark barriers to clonal growth along the proximal – distal axis of the Drosophila wing. Dev Biol 304:745–758

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate feedback on drafts of this manuscript from Andreas Wanninger, Ariel Chipman, and Bernard Goffinet. Andreas Wanninger also provided extensive guidance about the project, along with nearly endless patience and encouragement. The other hexapod chapter authors, Volker Hartenstein and Ariel Chipman, graciously shared drafts of their manuscripts. We thank Doug Emlen, Julia Bowsher, and David Wagner for generously contributing photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Jockusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Jockusch, E.L., Smith, F.W. (2015). Hexapoda: Comparative Aspects of Later Embryogenesis and Metamorphosis. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 5. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1868-9_3

Download citation

Publish with us

Policies and ethics