Skip to main content
Log in

Anion currents in yeast K+ transporters (TRK) characterize a structural homologue of ligand-gated ion channels

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Patch clamp studies of the potassium-transport proteins TRK1,2 in Saccharomyces cerevisiae have revealed large chloride efflux currents: at clamp voltages negative to −100 mV, and intracellular chloride concentrations >10 mM (J. Membr. Biol. 198:177, 2004). Stationary-state current-voltage analysis led to an in-series two-barrier model for chloride activation: the lower barrier (α) being 10–13 kcal/mol located ∼30% into the membrane from the cytoplasmic surface; and the higher one (β) being 12–16 kcal/mol located at the outer surface. Measurements carried out with lyotrophic anions and osmoprotective solutes have now demonstrated the following new properties: (1) selectivity for highly permeant anions changes with extracellular pH; at pHo = 5.5: I ≈ Br > Cl > SCN > NO 3 , and at pHo 7.5: I ≈ Br > SCN > NO 3  > Cl. (2) NO 2 acts like “superchoride”, possibly enhancing the channel’s intrinsic permeability to Cl. (3) SCN and NO 3 block chloride permeability. (4) The order of selectivity for several slightly permeant anions (at pHo = 5.5 only) is formate > gluconate > acetate >> phosphate−1. (5) All anion conductances are modulated (choked) by osmoprotective solutes. (6) The data and descriptive two-barrier model evoke a hypothetical structure (Biophys. J. 77:789, 1999) consisting of an intramembrane homotetramer of fungal TRK molecules, arrayed radially around a central cluster of four single helices (TM7) from each monomer. (7) That tetrameric cluster would resemble the hydrophobic core of (pentameric) ligand-gated ion channels, and would suggest voltage-modulated hydrophobic gating to underlie anion permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arriza JL, Ellasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  PubMed  CAS  Google Scholar 

  2. Back JF, Oakenfull D, Smith MB (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochem 18:5191–5196

    Article  CAS  Google Scholar 

  3. Beckstein O, Biggin PC, Sansom MSP (2001) A hydrophobic gating mechanism for nanopores. J Phys Chem B 105:12902–12905

    Article  CAS  Google Scholar 

  4. Beckstein O, Sansom MSP (2003) Liquid-vapor oscillations of water in hydrophobic nanopores. Proc Nat Acad Sci USA 100:7063–7068

    Article  PubMed  CAS  Google Scholar 

  5. Beckstein O, Sansom MSP (2006) A hydrophobic gate in an ion channel: the closed state of nicotinic acetylcholine receptor. Phys Biol 3:147–159

    Article  PubMed  CAS  Google Scholar 

  6. Beilby MJ (1986) Potassium channels and different states of Chara plasmalemma. J Membr Biol 89:241–249

    Article  CAS  Google Scholar 

  7. Bertl A, Bihler H, Kettner C, Slayman CL (1998) Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae. Eur J Physiol 436:999–1013

    Article  CAS  Google Scholar 

  8. Bertrand D, Ballivet M, Rungger D (1990) Activation and blocking of neuronal nicotinic acetylcholine receptor reconstituted in Xenopus ocytes. Proc Natl Acad Sci USA 87:1993–1997

    Article  PubMed  CAS  Google Scholar 

  9. Bihler H, Gaber RF, Slayman CL, Bertl A (1999) The presumed potassium carrier Trk2p in Saccharomyces cerevisiae determines an H+-dependent, K+-independent current. FEBS Lett 447:115–120

    Article  PubMed  CAS  Google Scholar 

  10. Blatt MR, Slayman CL (1983) KCl leakage from microelectrodes and its impact on the membrane parameters of a non-excitable cell. J Membr Biol 72:223–234

    Article  PubMed  CAS  Google Scholar 

  11. Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux J-P, Delarue M, Corringer P-J (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114

    Article  PubMed  CAS  Google Scholar 

  12. Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurons. J Physiol 385:243–286

    PubMed  CAS  Google Scholar 

  13. Caldas T, Demont-Caulet N, Ghazi A, Richarme G (1999) Thermoprotection by glycine betaine and choline. Microbiology 145:2543–2548

    PubMed  CAS  Google Scholar 

  14. Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloss B, Bruni R, Martinez-Hackert E, Hendrickson WA, Rost B, Javitch JA, Rajashankar KR, Jiang Y, Zhou M (2011) Crystal structure of a potassium ion transporter, TrkH. Nature 471:336–341.

    Article  PubMed  CAS  Google Scholar 

  15. Cássio F, Leão C (1993) A comparative study on the transort of L(−)malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease. Yeast 9:743–752

    Article  PubMed  Google Scholar 

  16. Chen T-Y (2005) Structure and function of ClC channels. Ann Rev Physiol 67:809–839

    Article  CAS  Google Scholar 

  17. Collins KD, Wasabaugh MW (1985) The Hofmeister effect and the behaviour of water at interfaces. Quart Rev Biophys 18:323–422

    Article  CAS  Google Scholar 

  18. Coster HGL (1968) The role of pH in the punch-through effect in the electrical characteristics of Chara australis. Aust J Biol Sci 22:365–374

    Google Scholar 

  19. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Ann Rev Physiol 54:579–599

    Article  CAS  Google Scholar 

  20. Dani JA, Sanchez JA, Hille B (1983) Lyotropic anions: Na channel gating and Ca electrode response. J Gen Physiol 81:255–281

    Article  PubMed  CAS  Google Scholar 

  21. Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808

    Article  PubMed  CAS  Google Scholar 

  22. Dräber S, Schultze R, Hansen U-P (1991) Patch-clamp studies on the anomalous mole fraction effect of the K+ channel in cytoplasmic droplets of Nitella: an attempt to distinguish between a multi-ion single-file pore and an enzynme kinetic model with lazy state. J Membr Biol 123:183–190

    Article  PubMed  Google Scholar 

  23. Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk1,2 symporters, based on the crystal structure of the KcsA K+ channel. Biophys J 77:789–807

    Article  PubMed  CAS  Google Scholar 

  24. Durell SR, Hao Y, Nakamura T, Bakker EP, Guy HR (1999) Evolutionary relationship between K+ channels and symporters. Biophys J 77:775–788

    Article  PubMed  CAS  Google Scholar 

  25. Fatima-Shad K, Barry PH (1993) Anion permeation in GABA- and glycine-gated channels of mammalian cultured hippocampal neurons. Proc Roy Soc Lond B 253:69–75

    Article  CAS  Google Scholar 

  26. Figler RA, Omote H, Nakamoto RK, Al-Shawi MK (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Arch Biochem Biophys 376:34–46

    Article  PubMed  CAS  Google Scholar 

  27. Galli A, Blakeley RD, DeFelice LJ (1996) Norepinephrine transporters have channel modes of conduction. Proc Natl Acad Sci USA 93:8671–8676

    Article  PubMed  CAS  Google Scholar 

  28. Gillespie D, Boda D, He Y, Apel P, Siwy ZS (2008) Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys J 95:609–619

    Article  PubMed  CAS  Google Scholar 

  29. Gong X, Linsdell P (2003) Mutation-induced blocker permeability and multi-ion block of the CFTR chloride channel pore. J Gen Physiol 122:673–687

    Article  PubMed  CAS  Google Scholar 

  30. Gradmann D, Boyd CM (1999) Electrophysiology of the marine diatom Coscinodiscus wailesii IV: types of non-linear current-voltage-time relationships recorded with single saw-tooth voltage-clamp experiments. Eur Biophys J 28:591–599

    Article  PubMed  CAS  Google Scholar 

  31. Gutknecht J, Walter A (1982) SCN- and HSCN transport through lipid bilayer membranes: a model for SCN- inhibition of gastric acid secretion. Biochim Biophys Acta 685:233–240

    Article  PubMed  CAS  Google Scholar 

  32. Hansen U-P, Cakan O, Abshagen-Keunecke M, Farokhi A (2003) Gating models of the anomalous mole-fraction effect of single-channel current in Chara. J Membr Biol 192:45–63

    Article  PubMed  CAS  Google Scholar 

  33. Haro R, Rodriguez-Navarro A (2003) Functional analysis of the M2D helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1613:1–6

    Article  PubMed  CAS  Google Scholar 

  34. Hersey SJ, Chew CW, Campbell L, Hopkins E (1981) Mechanism of action of SCN in isolated gastric glands. Am J Physiol 240:G232–G238

    PubMed  CAS  Google Scholar 

  35. Hilf RJC, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452:375–380

    Article  PubMed  CAS  Google Scholar 

  36. Hilf RJC, Dutzler R (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457:115–119

    Article  PubMed  CAS  Google Scholar 

  37. Hill AV, MacPherson L (1954) The effect of nitrate, iodide and bromide on the duration of the active state in skeletal muscle. Proc Roy Soc London Ser B 143:81–102

    Article  CAS  Google Scholar 

  38. Hille B (1975) Ionic selectivity, saturation, and block in sodium channels. J Gen Physiol 66:535–560

    Article  PubMed  CAS  Google Scholar 

  39. Hille B (2001) Selective permeability: saturation and binding. Ch 15 In: Channels of excitable membranes, 3rd edn. Sinauer Assoc, Sunderland MA

    Google Scholar 

  40. Hodgkin AL, Horowicz P (1960) The effect of nitrate and other anions on the mechanical response of single muscle fibres. J Physiol 153:404–412

    PubMed  CAS  Google Scholar 

  41. Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharmyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220:113–115

    Article  PubMed  CAS  Google Scholar 

  42. Hummer G, Rasalah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Article  PubMed  CAS  Google Scholar 

  43. Ibanogluu E (2005) Effect of hydrocolloids on the thermal denaturation of proteins. Food Chem 90:621–626

    Article  Google Scholar 

  44. Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Ann Rev Neurosci 20:91–123

    Article  PubMed  CAS  Google Scholar 

  45. Jensen MØ, Borhani DW, Lindorff-Larsen K, Maragakis P, Jogini V, Eastwood MP, Dror RO, Shaw DE (2010) Principles of conduction and hydrophobic gating in K+ channels. Proc Natl Acad Sci USA 107:5833–5838

    Article  PubMed  CAS  Google Scholar 

  46. Johnson FH, Eyring H, Polissar MJ (1954) The kinetic basis of molecular biology. Wiley, New York, 870 pp

    Google Scholar 

  47. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Press, New York, 234 pp

    Google Scholar 

  48. Kato Y, Sakaguchi M, Mori Y, Saito K, Nakamura T, Bakker EP, Sato Y, Goshima S, Uozumi N (2001) Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc Natl Acad Sci USA 98:6488–6493

    Article  PubMed  CAS  Google Scholar 

  49. Klodos I, Post RL, Forbush B III (1994) Kinetic heterogeneity of phosphoenzymne of Na,K-ATPase modeled by unmixed lipid phases. J Biol Chem 269:1734–1743

    PubMed  CAS  Google Scholar 

  50. Kuroda T, Bihler H, Bashi E, Slayman CL, Rivetta A (2004) Chloride channel function in the yeast TRK-potassium transporters. J Membr Biol 198:177–192

    Article  PubMed  CAS  Google Scholar 

  51. Lages F, Silva-Graça M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology 1245:2577–2585

    Google Scholar 

  52. Läuger P (1973) Ion transport through pores: a rate-theory analysis. Biochim Biophys Acta 311:423–441

    Article  PubMed  Google Scholar 

  53. Läuger P (1986) Barrier models for the description of proton transport across membranes. Meth Enz 127:465–471

    Article  Google Scholar 

  54. Lin F, Lester HA, Mager S (1996) Single-channel currents produced by the serotonin transporter and analysis of a mutation affecting ion permeation. Biophys J 71:3126–3135

    Article  PubMed  CAS  Google Scholar 

  55. Linsdell P (2001) Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 531:51–66

    Article  PubMed  CAS  Google Scholar 

  56. Lynch JW (2003) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095

    Article  Google Scholar 

  57. Makuc J, Paiva S, Schauen M, Krämer R, André B, Casal M, Leão C, Boles E (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18:1131–1143

    Article  PubMed  CAS  Google Scholar 

  58. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  59. Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N (2002) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per subunit HKT transporters from plants. Proc Natl Acad Sci USA 99:6428–6433

    Article  PubMed  Google Scholar 

  60. Meikle AJ, Reed RH, Gadd GM (1988) Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae. J Gen Microbiol 134:3049–3060

    PubMed  CAS  Google Scholar 

  61. Miranda M, Bashi E, Vylkova S, Edgerton M, Slayman C, Rivetta A (2009) Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on Candida albicans. FEMS Yeast Res 9:278–292

    Article  PubMed  CAS  Google Scholar 

  62. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–1055

    Article  PubMed  CAS  Google Scholar 

  63. Moorhouse AJ, Keramidas A, Zaykin A, Schofield PR, Barry PH (2002) Single channel analysis of conductance and rectification in cation-selective, mutant glycine receptor channels. J Gen Physiol 119:411–425

    Article  PubMed  CAS  Google Scholar 

  64. Nicholls P, Miller N (1974) Chloride diffusion from liposomes. Biochim Biophys Acta 336:184–198

    Google Scholar 

  65. O’Mara M, Barry PH, Chung S-H (2003) A model of the glycine receptor deduced from Brownian dynamics studies. Proc Natl Acad Sci 100:4310–4315

    Article  PubMed  Google Scholar 

  66. Pegg DE, Karow AM (eds) (1989) The biophysics of organ cryopreservation. Plenum Pr, New York. 433 pp

    Google Scholar 

  67. Post RL, Suzuki K (1991) A Hofmeister effect on the phosphoenzyme of Na. K-ATPase Soc Gen Physiol Ser 46:201–209

    CAS  Google Scholar 

  68. Rivetta A, Slayman CL, Kuroda T (2005) Quantitative modeling of chloride conductance in yeast TRK potassium transporters. Biophys J 89:2412–2426

    Article  PubMed  CAS  Google Scholar 

  69. Sands SB, Barish ME (1992) Neuronal nicotinic acetylcholine receptor currents in phaeochromocytoma (PC12) cells: dual mechanisms of rectification. J Physiol 447:467–487

    PubMed  CAS  Google Scholar 

  70. Sarantis M, Everett K, Attwell D (1988) A presynaptic action of glutamate at the cone output synapse. Nature 332:451–453

    Article  PubMed  CAS  Google Scholar 

  71. Schellman JA (2003) Protein stability in mixed solvents: a balance of contact interaction and excluded volume. Biophys J 85:108–125

    Article  PubMed  CAS  Google Scholar 

  72. Serrano R (1984) Plasma membrane ATPase of fungi and plants as a novel type of proton pump. Curr Top Cell Regul 23:87–126

    PubMed  CAS  Google Scholar 

  73. Sigler K, Kotyk A, Knotková A, Opekarová M (1981) Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 643:583–592

    Article  PubMed  CAS  Google Scholar 

  74. Slayman CL, Kaminski P, Stetson D (1990) Structure and function of fungal plasma-membrane ATPases. In: Kuhn PJ et al (eds) Biochemistry of cell walls and membranes of fungi. Springer, Berlin, pp 295–312

    Google Scholar 

  75. Slayman CL, Sanders D (1985) Steady-state kinetic analysis of an electroenzyme. Biochem Soc Symp 50:11–29

    PubMed  CAS  Google Scholar 

  76. Sonders MS, Amara SG (1996) Channels in transporters. Curr Opin Neurobiol 6:294–302

    Article  PubMed  CAS  Google Scholar 

  77. Sousa MJ, Mota M, Leão C (1992) Transport of malic acid in the yeast Schizosaccharomyces pombe: evidence for a proton-dicarboxylate symport. Yeast 8:1025–1031

    Article  PubMed  CAS  Google Scholar 

  78. Stauderman KA, Mahaffy LS, Akong M, Veliçelebi G, Chavez-Noriega LE, Crona JH, Johnson EC, Elliott KJ, Gillespie A, Reid RT, Adams P, Harpold MM, Corey-Naeve J (1998) Characterization of human recombinant neuronal nicotinic acetylcholine receptor subunit combinations α2β4, α3β4, and α4β4 stably expressed in HEK293 cells. J Pharmacol Exp Ther 284:777–789

    PubMed  CAS  Google Scholar 

  79. Sussich F, Skopec C, Brady J, Cesàro A (2001) Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr Res 334:165–176

    Article  PubMed  CAS  Google Scholar 

  80. Suzuki K, Post RL (1997) Equilibrium of phosphointermediates of sodium and potassium ion transport adenosine triphosphatase: action of sodium ion and Hofmeister effect. J Gen Physiol 109:537–554

    Article  PubMed  CAS  Google Scholar 

  81. Tabcharani JA, Chang X-B, Riordan JR, Hanrahan JW (1992) The cystic fibrosis transmembrane conductance regulator chloride channel: Iodide block and permeation. Biophys J 62(Disc):1–4

    Article  PubMed  CAS  Google Scholar 

  82. Tang P, Mandal PK, Xu Y (2002) NMR structures of the second transmembrane domain of the human glycine receptor α1 subunit: Model of pore architecture and channel gating. Biophys J 83:252–262

    Article  PubMed  CAS  Google Scholar 

  83. The R, Hasselbach W (1975) The action of chaotropic anions on the sarcoplasmic calcium pump. Eur J Biochem 53:105–113

    Article  CAS  Google Scholar 

  84. Tholema N, Bakker EP, Suzuki A, Nakamura T (1999) Change to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+-dependent K+-uptake system KtrAB from Vibrio alginolyticus. FEBS Lett 450:217–220

    Article  PubMed  CAS  Google Scholar 

  85. Toyoshima Y, Thompson TE (1975) Chloride flux in bilayer membranes: chloride permeability in aqueous dispersions of single-walled bilayer vesicles. Biochem 14:1525–1531

    Article  CAS  Google Scholar 

  86. Voet A (1937) Quantitative lyotropy. Chem Rev 20:169–179

    Article  CAS  Google Scholar 

  87. Volkov V, Boscari A, Clement M, Miller AJ, Amtmann A, Fricke W (2009) Electrophysiological characterization of pathways for K+ uptake into growing and non-growing leaf cells of barley. Plant Cell Environ 32:1778–1790

    Article  PubMed  CAS  Google Scholar 

  88. Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    Article  PubMed  CAS  Google Scholar 

  89. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cryoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  90. Yu J, Yool AJ, Schulten K, Tajkhorshid E (2006) Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1. Structure 14:1411–1423

    Article  PubMed  CAS  Google Scholar 

  91. Zeng G-F, Pypaert M, Slayman CL (2004) Epitope tagging of the yeast K+-carrier, TRK2, demonstrates folding which is consistent with a channel-like structure. J Biol Chem 279:3003–3013

    Article  PubMed  CAS  Google Scholar 

  92. Zhang X-D, Chen T-Y (2009) Amphiphilic blockers punch through a mutant CLC-0 pore. J Gen Physiol 133:59–68

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Esther Bashi for technical assistance throughout these experiments and especially for the construction of the EB series of strains, and to Mr. Kenneth Allen for always ready advice and assistance in the management of yeast cultures. We are also grateful to Dr. Albert Smith and to Dr. Kyle Cunningham (Johns Hopkins University) for provision of starting strains; and to Dr. Ming Zhou (Columbia University) for prepublication review of his manuscript on the structure of VpTrkH. Finally, Drs. Fred Sigworth, Edward Moczdlowski (Clarkson University), and Bertl Hille (University of Washington) provided much creative and helpful criticism of the manuscript. The work was supported by Research Grant R01-GM60696 (to CLS) from the US National Institute of General Medical Sciences and by an Overseas Research Scholarship from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (to TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford Slayman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivetta, A., Kuroda, T. & Slayman, C. Anion currents in yeast K+ transporters (TRK) characterize a structural homologue of ligand-gated ion channels. Pflugers Arch - Eur J Physiol 462, 315–330 (2011). https://doi.org/10.1007/s00424-011-0959-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0959-9

Keywords

Navigation