Skip to main content
Log in

Chloride Channel Function in the Yeast TRK-Potassium Transporters

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The TRK proteins—Trk1p and Trk2p— are the main agents responsible for “active” accumulation of potassium by the yeast Saccharomyces cerevisiae. In previous studies, inward currents measured through those proteins by whole-cell patch-clamping proved very unresponsive to changes of extracellular potassium concentration, although they did increase with extracellular proton concentration—qualitatively as expected for H+ coupling to K+ uptake. These puzzling observations have now been explored in greater detail, with the following major findings: a) the large inward TRK currents are not carried by influx of either K+ or H+, but rather by an efflux of chloride ions; b) with normal expression levels for Trk1p and Trk2p in potassium-replete cells, the inward TRK currents are contributed approximately half by Trk1p and half by Trk2p; but c) strain background strongly influences the absolute magnitude of these currents, which are nearly twice as large in W303-derived spheroplasts as in S288c-derived cells (same cell-size and identical recording conditions); d) incorporation of mutations that increase cell size (deletion of the Golgi calcium pump, Pmr1p) or that upregulate the TRK2 promoter, can further substantially increase the TRK currents; e) removal of intracellular chloride (e.g., replacement by sulfate or gluconate) reveals small inward currents that are K+-dependent and can be enhanced by K+ starvation; and f) finally, the latter currents display two saturating kinetic components, with preliminary estimates of K0.5 at 46 μM [K+]out and 6.8 mM [K+]out, and saturating fluxes of ∼5 mM/min and ∼10 mM/min (referred to intracellular water). These numbers are compatible with the normal K+-transport properties of Trk1p and Trk2p, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. N. Aghajari G. Feller C. Gerday R. Haser (2002) ArticleTitleStructural basis of α-amylase activation by chloride Protein Sci 11 1435–1441 Occurrence Handle10.1110/ps.0202602 Occurrence Handle12021442

    Article  PubMed  Google Scholar 

  2. J.A. Anderson S.S. Huprikar L.V. Kochian W.J. Lucas R.F. Gaber (1992) ArticleTitleFunctional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae Proc. Natl. Acad. Sci. USA 89 3736–3740 Occurrence Handle1570292

    PubMed  Google Scholar 

  3. A. Armstrong W.McD. Rothstein W.McD. Rothstein (1964) ArticleTitleDiscrimination between alkali metal cations by yeast. I. Effect of pH on uptake J. Gen. Physiol 48 61–71 Occurrence Handle10.1085/jgp.48.1.61 Occurrence Handle14212150

    Article  PubMed  Google Scholar 

  4. W.McD. Armstrong A. Rothstein (1967) ArticleTitleDiscrimination between alkali metal cations by yeast. II. Cation interactions in transport J. Gen. Physiol 50 967–988 Occurrence Handle10.1085/jgp.50.4.967 Occurrence Handle6034512

    Article  PubMed  Google Scholar 

  5. J.L. Arriza S. Ellasof M.P. Kavanaugh S.G. Amara (1997) ArticleTitleExcitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance Proc. Natl. Acad. Sci. USA 94 4155–4160 Occurrence Handle10.1073/pnas.94.8.4155 Occurrence Handle9108121

    Article  PubMed  Google Scholar 

  6. P. Artigas D.C. Gadsby (2003) ArticleTitleNa+/K+-pump ligands modulate gating of palytoxin-induced ion channels Proc. Natl. Acad. Sci. USA 100 501–505 Occurrence Handle10.1073/pnas.0135849100 Occurrence Handle12518045

    Article  PubMed  Google Scholar 

  7. E. Bakker (1993a) Cell K+ and K+ transport systems in prokaryotes E.P Bakker (Eds) Alkali Cation Transport Systems in Prokaryotes CRC Press Boca Raton, FL 205–224

    Google Scholar 

  8. E. Bakker (1993b) Low-affinity K+ uptake systems E.P Bakker (Eds) Alkali Cation Transport Systems in Prokaryotes CRC Press Boca Raton, FL 254–276

    Google Scholar 

  9. A.A. Bañuelos R.D. Klein S.J. Alexander-Bowman A. Rodriguez-Navarro (1995) ArticleTitleA potassium transporter of the yeast. Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity EMBO J 14 3021–3027 Occurrence Handle7621817

    PubMed  Google Scholar 

  10. A. Bertl H. Bihler C. Kettner C.L. Slayman (1998) ArticleTitleElectrophysiology in the eukaryotic model cell Saccharomyces cerevisiae Eur. J. Physiol 436 999–1013 Occurrence Handle10.1007/s004240050735

    Article  Google Scholar 

  11. A. Bertl J. Ramos J. Ludwig H. Lichtenberg-Frate J. Reid H. Bihler F. Calero P. Martinez P.O. Ljungdahl (2003) ArticleTitleCharacterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2, and tok1 null mutations Mol. Microbiol 47 767–780 Occurrence Handle10.1046/j.1365-2958.2003.03335.x Occurrence Handle12535075

    Article  PubMed  Google Scholar 

  12. A. Bertl C.L. Slayman (1992) ArticleTitleComplex modulation of cation channels in the tonoplast and plasma membrane of Saccharomyces cerevisiae: Single-channel studies J. Exp. Biol 172 271–287 Occurrence Handle1283402

    PubMed  Google Scholar 

  13. A. Bertl C.L. Slayman D. Gradmann (1993) ArticleTitleGating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiae J. Membrane Biol 132 183–199 Occurrence Handle10.1007/BF00235737

    Article  Google Scholar 

  14. H. Bihler R.F. Gaber C.L. Slayman A. Bertl (1999) ArticleTitleThe presumed potassium carrier Trk2p in Saccharomyces cerevisiae determines an H+-dependent, K+-independent current FEBS Lett 447 115–120 Occurrence Handle10.1016/S0014-5793(99)00281-1 Occurrence Handle10218594

    Article  PubMed  Google Scholar 

  15. M.R. Blatt A. Rodriguez-Navarro C.L. Slayman (1987) ArticleTitleThe potassium-proton symport in Neurospora: Kinetic control by pH and membrane potential J. Membrane Biol 98 169–189 Occurrence Handle10.1007/BF01872129

    Article  Google Scholar 

  16. M.R. Blatt C.L. Slayman (1983) ArticleTitleKCl leakage from microelectrodes and its impact on the membrane parameters of a non-excitable cell J. Membrane Biol 72 223–234 Occurrence Handle10.1007/BF01870589

    Article  Google Scholar 

  17. M. Blaustein M Liberman (Eds) (1984) Electrogenic Transport: Fundamental Principles and Physiological Implications Raven Press New York

    Google Scholar 

  18. D. Bossemeyer A. Borchard D.C. Dosch G.C. Helmer W. Epstein I.R. Booth E.P. Bakker (1989) ArticleTitleK+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane J. Biol. Chem 264 16403–16410 Occurrence Handle2674131

    PubMed  Google Scholar 

  19. LA. Coury J.E.M. McGeoch G. Guidotti J.L. Brodsky (1999) ArticleTitleThe yeast Saccharomyces cerevisiae does not sequester chloride but can express a functional mammalian chloride channel FEMS Microbiol. Lett 179 327–332 Occurrence Handle10.1016/S0378-1097(99)00431-0 Occurrence Handle10518733

    Article  PubMed  Google Scholar 

  20. S.R. Davis-Kaplan C.C. Askwith A.C. Bengtzen D. Radisky J. Kaplan (1998) ArticleTitleChloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels Proc. Natl. Acad. Sci. USA 95 13641–13645 Occurrence Handle10.1073/pnas.95.23.13641 Occurrence Handle9811853

    Article  PubMed  Google Scholar 

  21. E. Diatloff R. Kumar DP. Schachtman (1998) ArticleTitleSite-directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter FEBS Lett 432 31–36 Occurrence Handle10.1016/S0014-5793(98)00833-3 Occurrence Handle9710245

    Article  PubMed  Google Scholar 

  22. S.R. Durell H.R. Guy (1999) ArticleTitleStructural models of the KtrB, TrkH, and Trk1,2 symporters, based on the crystal structure of the KcsA K+ channel Biophys. J 77 789–807 Occurrence Handle10423426

    PubMed  Google Scholar 

  23. R.F. Gaber C.A. Styles G.R. Fink (1986) ArticleTitleTRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell. Biol 8 2848–2859

    Google Scholar 

  24. W. Gassmann F. Rubio J.I. Schroeder (1996) ArticleTitleAlkali cation selectivity of the wheat root high-affinity potassium transporter HKT1 Plant J 10 869–882 Occurrence Handle10.1046/j.1365-313X.1996.10050869.x Occurrence Handle8953248

    Article  PubMed  Google Scholar 

  25. R.A. Gaxiola D.S. Yuan R.D. Klausner G.R. Fink (1998) ArticleTitleThe yeast CLC chloride channel functions in cation homeostasis Proc. Natl. Acad. Sci. USA 95 4046–4050 Occurrence Handle10.1073/pnas.95.7.4046 Occurrence Handle9520490

    Article  PubMed  Google Scholar 

  26. S.A.N. Goldstein L.A. Price D.N. Rosenthal M.H. Pausch (1996) ArticleTitleORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae Proc. Natl. Acad. Sci. USA 93 13256–13261 Occurrence Handle10.1073/pnas.93.23.13256 Occurrence Handle8917578

    Article  PubMed  Google Scholar 

  27. J.R. Greene N.H. Brown B.J. DiDomenico J. Kaplan D.J. Eide (1993) ArticleTitleThe GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth Mol. Gen. Genet 241 542–553 Occurrence Handle10.1007/BF00279896 Occurrence Handle7505388

    Article  PubMed  Google Scholar 

  28. W. Günther A. Lüchow F. Cluzeaud A. Vandewalle T.J. Jentsch (1998) ArticleTitleCIC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells Proc. Natl. Acad. Sci. USA 95 8075–8080 Occurrence Handle10.1073/pnas.95.14.8075 Occurrence Handle9653142

    Article  PubMed  Google Scholar 

  29. J. Gutknecht (1992) ArticleTitleAspirin, acetaminophen, and proton transport through phospholipid bilayers and mitochondrial membranes Mol. Cell Biochem 114 3–8 Occurrence Handle1334228

    PubMed  Google Scholar 

  30. J. Gutknecht D.C. Tosteson (1973) ArticleTitleDiffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers Science 182 1258–1261 Occurrence Handle4752218

    PubMed  Google Scholar 

  31. R. Haro A. Rodriguez-Navarro (2002) ArticleTitleMolecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae Biochim. Biophys. Acta 1564 114–122 Occurrence Handle12101003

    PubMed  Google Scholar 

  32. R. Haro A. Rodriguez-Navarro (2003) ArticleTitleFunctional analysis of the M2D helix of the TRK1 potassium transporter of Saccharomyces cerevisiae Biochim. Biophys. Acta 1613 1–6 Occurrence Handle12832081

    PubMed  Google Scholar 

  33. T. Horie I. Yoshida H. Nakayama K. Yamada S. Oiki A. Shinmyo (2001) ArticleTitleTwo types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa Plant J 27 129–138 Occurrence Handle10.1046/j.1365-313x.2001.01077.x Occurrence Handle11489190

    Article  PubMed  Google Scholar 

  34. M.-E. Huang J.-C. Chuat F. Galibert (1994) ArticleTitleA voltage-gated chloride channel in the yeast Saccharomyces cerevisiae J. Mol. Biol 242 595–598 Occurrence Handle10.1006/jmbi.1994.1607 Occurrence Handle7932715

    Article  PubMed  Google Scholar 

  35. M.L. Jennings, J. Cui, 2003 Chloride transport and homeostasis in Saccharomyces cerevisiae. Abstr. 57th Meeting Soc Gen. Physiol (Woods Hole MA, Sept. 3-7), Item 113 Insert

  36. Y. Kato M. Sakaguchi Y. Mori K. Saito T. Nakamura E.P. Bakker Y. Sato S. Goshima N. Uozumi (2001) ArticleTitleEvidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+ /K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters Proc. Natl. Acad. Sci. USA 98 6488–6493 Occurrence Handle10.1073/pnas.101556598 Occurrence Handle11344270

    Article  PubMed  Google Scholar 

  37. K.A. Ketchum W.J. Joiner A.J. Sellers L.K. Kaczmarek S.A.N. Goldstein (1995) ArticleTitleA new family of outwardly rectifiying potassium channel proteins with two pore domains in tandem Nature 376 690–695 Occurrence Handle10.1038/376690a0 Occurrence Handle7651518

    Article  PubMed  Google Scholar 

  38. C. Kettner A. Bertl G. Obermeyer C.L Slayman H. Bihler (2003) ArticleTitleElectrophysiological analysis of the yeast V-type proton pump: variable coupling ratio and proton shunt Biophys. J 85 3730–3738 Occurrence Handle14645064

    PubMed  Google Scholar 

  39. C.H. Ko A.M. Buckley R.F. Gaber (1990) ArticleTitleTRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae Genetics 125 305–312 Occurrence Handle2199312

    PubMed  Google Scholar 

  40. P. Läuger (1991) Electrogenic Ion Pumps Sinauer Assoc. 313 pp. Sunderland, MA

    Google Scholar 

  41. H.A. Lester Y. Cao S. Mager (1996) ArticleTitleListening to neurotransmitter transporters Neuron 17 807–810 Occurrence Handle10.1016/S0896-6273(00)80213-5 Occurrence Handle8938113

    Article  PubMed  Google Scholar 

  42. F. Lin H.A. Lester S. Mager (1996) ArticleTitleSinge-channel currents produced by the serotonin transporter and analysis of a mutation affecting ion permeation Biophys. J 71 3126–3135 Occurrence Handle8968583

    PubMed  Google Scholar 

  43. W. Liu D.P. Schachtman W. Zhang (2000) ArticleTitlePartial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance J. Biol. Chem 275 27924–27932 Occurrence Handle10821831

    PubMed  Google Scholar 

  44. E.G. Locke M. Bonilla L. Liang Y. Takita K.W. Cunningham (2000) ArticleTitleA homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast Mol. Cell. Biol 20 6686–6694 Occurrence Handle10.1128/MCB.20.18.6686-6694.2000 Occurrence Handle10958666

    Article  PubMed  Google Scholar 

  45. S.H. Loukin Y. Saimi (1999) ArticleTitleK+-dependent composite gating of the yeast K+ channel, Tok1 Biophys. J 77 3060–3070 Occurrence Handle10585928

    PubMed  Google Scholar 

  46. P. Mäser Y. Hosoo S. Goshima T. Horie B. Eckelman K. Yamada K. Yoshida E.P. Bakker A. Shinmyo S. Oiki J.I. Schroeder N. Uozumi (2002) ArticleTitleGlycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants Proc. Natl. Acad. Sci. USA 99 6428–6433 Occurrence Handle10.1073/pnas.082123799 Occurrence Handle11959905

    Article  PubMed  Google Scholar 

  47. D.L. Minor S.J. Masseling Y.N. Jan L.Y. Jan (1999) ArticleTitleTransmembrane structure of an inwardly rectifying potassium channel Cell 96 879–891 Occurrence Handle10.1016/S0092-8674(00)80597-8 Occurrence Handle10102275

    Article  PubMed  Google Scholar 

  48. J. Ramos R. Alijo R. Haro A. Rodriguez-Navarro (1994) ArticleTitleTRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae J. Bacteriol 176 249–252 Occurrence Handle8282703

    PubMed  Google Scholar 

  49. A. Rodriguez-Navarro M.R. Blatt C.L. Slayman (1986) ArticleTitleA potassium-proton symport in Neurospora crassa J. Gen. Physiol 87 649–674 Occurrence Handle10.1085/jgp.87.5.649 Occurrence Handle3014042

    Article  PubMed  Google Scholar 

  50. A. Rodriguez-Navarro J. Ramos (1984) ArticleTitleDual system for potassium transport in Saccharomyces cerevisiae J. Bacteriol 159 940–945 Occurrence Handle6384187

    PubMed  Google Scholar 

  51. K.-H. Röhm (1985) ArticleTitleChloride as allosteric effector of yeast aminopeptidase I Arch. Biochem. Biophys 239 216–225 Occurrence Handle10.1016/0003-9861(85)90829-X Occurrence Handle3890752

    Article  PubMed  Google Scholar 

  52. F. Rubio W. Gassmann J.I. Schroeder (1995) ArticleTitleSodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance Science 270 1660–1663 Occurrence Handle7502075

    PubMed  Google Scholar 

  53. F. Rubio M. Schwarz W. Gassmann J.I. Schroeder (1999) ArticleTitleGenetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance J. Biol. Chem 274 6839–6847 Occurrence Handle10.1074/jbc.274.11.6839 Occurrence Handle10066736

    Article  PubMed  Google Scholar 

  54. M. Schleyer E.P. Bakker (1993) ArticleTitleNucleotide sequence and 3′-end deletion studies indicate that the K+-uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus J. Bacteriol 175 6925–6931 Occurrence Handle8226635

    PubMed  Google Scholar 

  55. A. Schlösser M. Meldorf S. Stumpe E.P. Bakker W. Epstein (1995) ArticleTitleTrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli J. Bacteriol 177 1908–1910 Occurrence Handle7896723

    PubMed  Google Scholar 

  56. B. Schwappach S. Strobrawa M. Hechenberger K. Steinmeyer T.J. Jentsch (1998) ArticleTitleGolgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p J. Biol. Chem 273 15110–15118 Occurrence Handle10.1074/jbc.273.24.15110 Occurrence Handle9614122

    Article  PubMed  Google Scholar 

  57. H. Sentenac N. Bonneaud M. Minet F. Lacroute J.-M. Salmon F. Gaymard C. Grignon (1992) ArticleTitleCloning and expression in yeast of a plant potassium ion transport system Science 256 664–665

    Google Scholar 

  58. F.C. Sherman (1991) ArticleTitleGetting started with yeast Meth. Enz 194 3–21

    Google Scholar 

  59. R.S. Sikorski P. Hieter (1989) ArticleTitleA system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae Genetics 122 19–27 Occurrence Handle2659436

    PubMed  Google Scholar 

  60. C.L. Slayman 1982 Electrogenic Ion Pumps Current Topics in Membranes and Transport. Vol. 16 Academic Press NewYork

  61. C.L. Slayman P. Kaminski D. Stetson (1989) Structure and function of fungal plasma-membrane ATPases P.J Kuhn (Eds) Biochemistry of Cell Walls and Membranes of Fungi Springer-Verlag Berlin 295–312

    Google Scholar 

  62. S. Stumpe A. Schlösser M. Schleyer E.P. Bakker (1996) K+ circulation across the prokaryotic cell membrane: K+-uptake systems W.N. Konings H.R. Kaback J.S. Lolkema (Eds) Transport Processes in Eukaryotic and Prokaryotic Organisms Elsevier Amsterdam 473–500

    Google Scholar 

  63. N. Tholema E.P. Bakker A. Suzuki T. Nakamura (1999) ArticleTitleChange to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+-dependent K+-uptake system KtrAB from Vibrio alginolyticus FEBS Lett 450 217–220 Occurrence Handle10.1016/S0014-5793(99)00504-9 Occurrence Handle10359077

    Article  PubMed  Google Scholar 

  64. N. Uozumi E.J. Kim F. Rubio T. Yamaguchi S. Muto A. Tsuboi E.P. Bakker T. Nakamura J.I. Schroeder (2000) ArticleTitleThe Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae Plant Physiol 122 1249–1259 Occurrence Handle10.1104/pp.122.4.1249 Occurrence Handle10759522

    Article  PubMed  Google Scholar 

  65. P. Vergani T. Miosga S. Jarvis M.R. Blatt (1997) ArticleTitleExtracellular K+ and Ba2+ mediate voltage-dependent inactivation of the outward-rectifying K+ channel encoded by the yeast gene TOK1 FEBS Lett 405 337–344 Occurrence Handle10.1016/S0014-5793(97)00211-1 Occurrence Handle9108315

    Article  PubMed  Google Scholar 

  66. M. Vidal A.M. Buckley F. Hilger R.F. Gaber (1990) ArticleTitleDirect selection for mutants with increased K+ transport in Sacchaormyces cerevisiae Genetics 125 313–320 Occurrence Handle2199313

    PubMed  Google Scholar 

  67. M. Vidal A.M. Buckley C. Yohn D.J. Hoeppner R.F. Gaber (1995) ArticleTitleIdentification of essential nucleotides in an upstream repressing sequence of Saccharomyces cerevisiae by selection for increased expression of TRK2. Proc Natl. Acad. Sci. USA 92 2370–2374

    Google Scholar 

  68. Y. Wada Y. Ohsumi Y. Anraku (1992) ArticleTitleChloride transport of yeast vacuolar membrane vesicles: a study of in vitro vacuolar acidification Biochim. Biophys. Acta 1101 296–302 Occurrence Handle1386528

    PubMed  Google Scholar 

  69. J.I. Wadiche S.G. Amara M.P. Kavanaugh (1995) ArticleTitleIon fluxes associated with excitatory amino acid transport Neuron 15 721–728 Occurrence Handle10.1016/0896-6273(95)90159-0 Occurrence Handle7546750

    Article  PubMed  Google Scholar 

  70. A. Walter D. Hastings J. Gutknecht (1982) ArticleTitleWeak acid permeability through lipid bilayer membranes J. Gen. Physiol 79 917–933 Occurrence Handle10.1085/jgp.79.5.917 Occurrence Handle7097246

    Article  PubMed  Google Scholar 

  71. W.-M. Weber (1999) ArticleTitleIon currents of Xenopus laevis oocytes: state of the art Biochim. Biophys. Acta 1421 213–233 Occurrence Handle10518693

    PubMed  Google Scholar 

  72. G.-F. Zeng M. Pypaert C.L. Slayman (2004) ArticleTitleEpitope tagging of the yeast K+-carrier, TRK2, demonstrates folding which is consistent with a channel-like structure, J Biol. Chem 279 3003–3013

    Google Scholar 

Download references

Acknowledgements

For yeast strains, the authors are indebted to Drs. Bert Smith (formerly in the Department of Molecular, Cellular, and Developmental Biology at Yale; now at deCode Genetics, Reykjavik), Kyle Cunningham (Johns Hopkins University), Richard Gaber (Northwestern University), and Per Ljungdahl (Ludwig Institute, Stockholm, Sweden). We are also indebted to Drs. Michael Snyder and Beth Rockmill (Yale Department of Molecular, Cellular, and Developmental Biology), to Dr. Scott Erdman (Syracuse University), to Dr. Peter Novick (Yale Department of Cell Biology), and to Dr. Ge-Fei Zeng (this Department) for much helpful advice toward the construction of yeast mutants. Finally, we are especially indebted to Dr. Adam Bertl (Botanical Institute I, Karlsruhe, Germany) for inspiring these investigations, for pointing to the likely importance of strain background, and for a thorough and helpful critique of the manuscript. The research was supported by Grant # GM-60696 from the National Institute of General Medical Sciences (to C.L.S.), and by an Overseas Research Scholarship from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (to T.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Slayman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, T., Bihler, H., Bashi, E. et al. Chloride Channel Function in the Yeast TRK-Potassium Transporters. J Membrane Biol 198, 177–192 (2004). https://doi.org/10.1007/s00232-004-0671-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-004-0671-1

Keywords

Navigation