Skip to main content
Log in

KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Microcapillary electrodes filled with a variety of salt solutions, including 1m KCl, have been used to measure the membrane potentials and resistances of spherical cells from the mycelial fungusNeurospora (cell diameters 15–25 μm, cell volumes 3–8 pl). During impalements with electrodes containing 0.3–1.0m KCl, membrane potential and resistance decayed over a period of 3–10 min. In contrast, electrodes filled with 0.1m KCl gave stable membrane potentials of −180 mV and membrane resistivities of 40 kΩ cm2, values comparable to earlier results from the fungal hyphae.

Salt leakage from 1.0m KCl-filled electrodes (tip diameters 0.2–0.3 μm, resistances 50–75 MΩ) occurred at rates of 4–5 fmol sec−1, as indicated by direct intracellular measurements with ion-sensitive microelectrodes. Depending on cell size, such leakage rates could elevate cytoplasmic KCl content at initial rates of 30–170 mM min−1, and actual values as high as 70mm min−1 were observed. Salt leakage and changes in cytoplasmic KCl concentration were reduced five- to sevenfold when impalements were made with electrodes containing 0.1m KCl.

The effects on cell membrane parameters of salt leakage from microelectrodes could be attributed to chloride ions. Substitution of the KCl electrolyte with half-molar K2SO4 or Na2SO4 and molar concentrations of K- and Na-MES [potassium and sodium 2-(N-morpholino)ethanesulfonate] gave stable membrane potentials in excess of −200 mV and membrane resistivities greater than 50 kΩ cm2, while the permeant anions NO 3 and SCN depressed the membrane parameters in a manner similar to that observed with 1m KCl. Furthermore, modest elevation of cytoplasmic chloride concentration (below ca. 50 mM) affected both membrane potential and resistance in direct proportion to the concentration, and could be quantitatively described by the Constant Field Theory with a fixed membrane permeability (P Cl∼4×10−8 cm sec−1). Higher cytoplasmic chloride levels produced a collapse of the membrane resistance and drastic depolarization in a fashion requiring large changes of membrane permeability.

At least for cells with volumes of 10 pl or less, the standard practice of filling electrodes with 1 or 3m KCl should be abandoned. Half-molar (and lower) concentrations of K2SO4 or Na2SO4 are suggested as satisfactory replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. 1956. The effect of internal and external potassium concentration on the membrane potential of frog muscle.J. Physiol. (London) 133:631–658

    Google Scholar 

  • Bates, W., Wilson, J. 1974. Ethylene glycol-induced alteration of conidial germination inNeurospora crassa.J. Bacteriol. 117:560–567

    Google Scholar 

  • Borst-Pauwels, G. 1981. Ion transport in yeast.Biochim. Biophys. Acta 650:688–127

    Google Scholar 

  • Coles, J., Tsacopoulos, M. 1977. A method of making fine double-barrelled potassium-sensitive microelectrodes for intracellular recording.J. Physiol. (London) 270:12–14P

    Google Scholar 

  • Coombs, J., eccles, J., Fatt, P. 1955. The specific ion conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential.J. Physiol. (London) 130:326–373

    Google Scholar 

  • Davis, T., Jackson, J., Day, B., Shoemaker, R., Rehm, W 1970. Potentials in frog cornea and microelectrode artifact.Am. J. Physiol. 219:178–182

    Google Scholar 

  • Fromm, M., Schultz, S.G. 1981. Some properties of KCl-filled microelectrodes: Correlation of potassium “leakage” with tip resistance.J. Membrane Biol. 62:239–244

    Google Scholar 

  • Geisler, C., Lightfoot, E., Schmidt, F., Sy, F. 1972. Diffusion effects of liquid-filled micropipettes: A pseudobinary analysis of electrolyte leakage.IEEE Trans. Biomed. Eng. 19:372–374

    Google Scholar 

  • Gradmann, D., Hansen, U.-P., Long, W.S., Slayman, C.L., Warncke, J. 1978. Current-voltage relationships for the plasma membrane and its principal electrogenic pump inNeurospora crassa: I. Steady-state conditions.J. Membrane Biol. 39:333–367

    Google Scholar 

  • Gradmann, D., Hansen, U.-P., Slayman, C.L. 1982. Reactionkinetic analysis of current-voltage relationships for electrogenic pumps inNeurospora andAcetabularia.In: Electrogenic Ion Pumps. C.L. Slayman, editor. pp. 259–276. Academic Press, New York

    Google Scholar 

  • Graham, J., Gerard, R. 1946. Membrane potentials and excitation of impaled single muscle fibers.J. Cell. Comp. Physiol. 28:99–117

    Google Scholar 

  • Hansen, U.-P., Slayman, C.L. 1978. Current-voltage relationships for a clearly electrogenic cotransport system.In: Membrane Transport Processes. J. Hoffman, editor. Vol. 1, pp. 141–154. Raven Press, New York

    Google Scholar 

  • Hodgkin, A., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol. (London) 148:127–160

    Google Scholar 

  • Hodgkin, A., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Isenberg, G. 1979. Risk and advantages of using strongly bevelled microelectrodes for physiological studies in cardiac Purkinje fibers.Pfluegers Arch. 380:91–98

    Google Scholar 

  • Lamb, J., MacKinnon, M. 1971. The membrane potential and permeabilities of the L-cell membrane to sodium, potassium and chloride.J. Physiol. (London) 213:683–698

    Google Scholar 

  • Lewis, S., Wills, N. 1980. Resistive artifacts in liquid ion-exchanger microelectrode estimates of Na+ activity in epithelial cells.Biophys. J. 31:127–138

    Google Scholar 

  • Lewis, S., Wills, N.R., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148

    Google Scholar 

  • Ling, G. 1948. Effect of stretch on membrane potential in frog muscle.Fed. Proc. 7:72–89

    Google Scholar 

  • Ling, G., Gerard, R. 1949. the normal membrane potential of frog sartorius fibers.J. Cell. Comp. Physiol. 34:383–396

    Google Scholar 

  • Lowendorf, H., Slayman, C.L., Slayman, C.W. 1974. Phosphate transport inNeurospora: Kinetic characterization of a constitutive, low-affinity transport system.Biochim. Biophys. Acta 373:369–382

    Google Scholar 

  • Maloff, B., Scordilis, S., Reynolds, C., Tedeschi, H. 1978. Membrane potentials and resistances of giant mitochondria.J. Cell Biol. 78:199–213

    Google Scholar 

  • Marquardt, D. 1963. An algorithm for least-squares estimation of non-linear parameters.J. Soc. Ind. Appl. Math. 11:431–441

    Google Scholar 

  • Moody, W., Zeiger, E. 1978. Electrophysiological properties of onion guard cells.Planta 139:159–165

    Google Scholar 

  • Mummert, H., Gradmann, D. 1976. Voltage-dependent potassium fluxes and the significance of action potentials inAcetabularia.Biochim. Biophys. Acta 443:443–450

    Google Scholar 

  • Nastuk, W., Hodgkin, A. 1950. The electrical activity of single muscle fibers.J. Cell. Comp. Physiol. 35:39–74

    Google Scholar 

  • Nelson, D.J., Ehrenfeld, J., Lindemann, B. 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl.J. Membrane Biol. Special Issue: 91–119

  • Nelson, P., Peacock, J., Minna, J. 1972. An active electrical response in fibroblasts.J. Gen. Physiol. 60:58–71

    Google Scholar 

  • Okada, Y., Tsuchiya, W., Inouye, A. 1979. Oscillations of membrane potential in L cells: IV. Role of intracellular Ca2+ in hyperpolarizing excitability.J. Membrane Biol. 47:357–376

    Google Scholar 

  • Page, K., Kelday, L., Bowling, D. 1981. The diffusion of KCl from microelectrodes.J. Exp. Bot. 32:55–58

    Google Scholar 

  • Purves, R. 1979. The physics of iontophoretic pipettes.J. Neurosci. Meth. 1:165–178

    Google Scholar 

  • Racusen, R., Kinnersley, A., Galston, A. 1977. Osmotically induced changes in electrical properties of plant protoplast membranes.Science 198:405–407

    Google Scholar 

  • Slayman, C.L. 1965a. Electrical properties ofNeurospora crassa: Effects of external cations on the intracellular potential.J. Gen. Physiol. 49:69–92

    Google Scholar 

  • Slayman, C.L. 1965b. Electrical properties ofNeurospora crassa: Respiration and the intracellular potential.J. Gen. Physiol. 49:93–116

    Google Scholar 

  • Slayman, C.L. 1970. Movements of ions and electrogenesis in microorganisms.Am. Zool. 10:377–392

    Google Scholar 

  • Slayman, C.L. 1982. Charge-transport characteristics of a plasma-membrane proton pump.In: Membranes and Transport, A. Martonosi, editor. Plenum Press, New York (in press)

    Google Scholar 

  • Slayman, C.L., Long, W.S., Gradmann, D. 1976. ‘Action potentials’ inNeurospora crassa, a mycelial fungus.Biochim. Biophys. Acta 426:732–744

    Google Scholar 

  • Slayman, C.L., Slayman, C.W. 1968. Net uptake of potassium inNeurospora, exchange for sodium and hydrogen ions.J. Gen. Physiol. 52:424–443

    Google Scholar 

  • Stroobant, P., Scarborough, G. 1979. Active transport of calcium inNeurospora plasma membrane vesicles.Proc. Natl. Acad. Sci. USA 76:3102–3106

    Google Scholar 

  • Sze, H., Churchill, K. 1981. Mg2+/KCl-ATPase of plant plasma membranes is an electrogenic pump.Proc. Natl. Acad. Sci. USA 78:5578–5582

    Google Scholar 

  • Thomas, R. 1977. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurons.J. Physiol (London) 273:317–338

    Google Scholar 

  • Thomas, R. 1978. Ion-Sensitive Microelectrodes. Academic Press, London-New York-San Francisco

    Google Scholar 

  • Wills, N.K., Lewis, S.A., Eaton, D.C. 1979. Active and passive properties of rabbit descending colon: A microelectrode and nystatin study.J. Membrane Biol. 45:81–108

    Google Scholar 

  • Vogel, H. 1956. A convenient growth medium forNeurospora.Microbial Gen. Bull. 13:42–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatt, M.R., Slayman, C.L. KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell. J. Membrain Biol. 72, 223–234 (1983). https://doi.org/10.1007/BF01870589

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870589

Key Words

Navigation