Skip to main content
Log in

Rotational and translational diffusivities of germanium nanowires

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Understanding the rheological behavior of dilute dispersions of cylindrical nanomaterials in fluids is the first step towards the development of rheological models for these materials. Individual particle tracking was used to quantify the rotational and translational diffusivities of high-aspect-ratio germanium nanowires in alcohol solvents at room temperature. In spite of their long lengths and high aspect ratios, the rods were found to undergo Brownian motion. This work represents the first time that the effects of solvent viscosity and confinement have been directly measured and the results compared to proposed theoretical models. Using viscosity as a single adjustable parameter in the Kirkwood model for Brownian rods was found to be a facile and versatile way of predicting the diffusivities of nanowires across a broad range of length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Broersma S (1981) Viscous force and torque constants for a cylinder. J Chem Phys 74:6989–6990

    Article  ADS  Google Scholar 

  • Chatterjee T, Khrishnamoorti R (2007) Dynamic consequences of the fractal network of nanotube-poly(ethylene oxide) nanocomposites. Phys Rev E 75:114307

    Article  Google Scholar 

  • Davis VA et al (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37:154–160

    Article  ADS  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Donald AM, Windle AH (1992) Liquid crystalline polymers. Cambridge University Press, Cambridge

    Google Scholar 

  • Duggal R, Pasquali M (2006) Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys Rev Lett 96:246104

    Article  PubMed  ADS  Google Scholar 

  • Fry D et al (2005) Anisotropy of sheared carbon-nanotube suspensions. Phys Rev Lett 95:038304

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gittes F et al (1993) Flexural rigidity of microtubules and actin-filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934

    Article  PubMed  CAS  Google Scholar 

  • Hanrath T, Korgel BA (2004) Chemical surface passivation of Ge nanowires. J Am Chem Soc 126:15466–15472

    Article  PubMed  CAS  Google Scholar 

  • Hobbie EK, Fry DJ (2006) Nonequilibrium phase diagram of sticky nanotube suspensions. Phys Rev Lett 97:036101

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hobbie EK, Fry DJ (2007) Rheology of concentrated carbon nanotube suspensions. J Chem Phys 126:124907

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hunt AJ et al (1994) The force exerted by a single kinesin molecule against a viscous load. Biophys J 67:766–781

    Article  PubMed  ADS  CAS  Google Scholar 

  • Jeffrey DJ, Onishi Y (1981) The slow motion of a cylinder next to a plane wall. Q J Mech Appl Math 34:129–137

    Article  MATH  MathSciNet  Google Scholar 

  • Kirkwood JG, Plock RJ (1956) Non-Newtonian viscoelastic properties of rod-like molecules in solution. J Chem Phys 24:665–669

    Article  ADS  CAS  Google Scholar 

  • Li GL, Tang JX (2004) Diffusion of actin filaments within a thin layer between two walls. Phys Rev E 69:061921

    Article  ADS  Google Scholar 

  • Lu X et al (2005) High yield solution-liquid–solid synthesis of germanium nanowires. J Am Chem Soc 127:15718–15719

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Maeda Y (2007) Direct observation of brownian dynamics of hard colloidal nanorods. Nano Lett 7:3329–3335

    Article  PubMed  CAS  Google Scholar 

  • Mukhija D, Solomon MJ (2007) Translational and rotational dynamics of colloidal rods by direct visualization with confocal microscopy. J Colloid Interface Sci 314:98–106

    Article  PubMed  CAS  Google Scholar 

  • Murphy CJ et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  PubMed  CAS  Google Scholar 

  • Ngo LT et al (2006) Ultimate-strength germanium nanowires. Nano Lett 6:2964–2968

    Article  PubMed  CAS  Google Scholar 

  • Parra-Vasquez ANG et al (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40:4043–4047

    Article  ADS  CAS  Google Scholar 

  • Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72:1744–1753

    Article  PubMed  CAS  Google Scholar 

  • Smith DA et al (2008) Young’s modulus and size-dependent mechanical quality factor of nanoelectromechanical germanium nanowire resonators. J Phys Chem C 112:10725–10729

    Article  CAS  Google Scholar 

  • Song YS (2006) Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites. Rheol Acta 46:231–238

    Article  CAS  Google Scholar 

  • Wang D, Dai H (2006) Germanium nanowires: from synthesis, surface chemistry, and assembly to devices. Appl Phys A Mater Sci Process 85:217–225

    Article  ADS  CAS  Google Scholar 

  • Yakobson BI, Couchman LS (2004) Carbon nanotubes: supramolecular mechanics. In: Schwarz JA, Contescu CI, Putyera K (eds) Dekker encyclopedia of nanoscience and nanotechnology. Marcel Dekker, New York, pp 587–601

    Google Scholar 

  • Yang Y et al (2006) Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Physi 99:114307

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Nanoscale Exploratory Research Program NSF-CMMI-0707981 and the Auburn Undergraduate Research Fellowship Program. DCL and BCK acknowledge funding of this research by the Robert A. Welch Foundation. The authors would also like to thank Matthew J. Kayatin for rotational rheology of the solvents, Vinod Radhakrishnan and Shanthi Murali for AFM, and Dr. Rajat Duggal for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, B.D., Davis, V.A., Lee, D.C. et al. Rotational and translational diffusivities of germanium nanowires. Rheol Acta 48, 589–596 (2009). https://doi.org/10.1007/s00397-009-0361-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0361-0

Keywords

Navigation