Skip to main content
Log in

Germanium nanowires: from synthesis, surface chemistry, and assembly to devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A low temperature synthesis of single crystalline Ge nanowires via chemical vapor deposition is enabled by balancing the feedstock and its diffusion in growth seeds. Understanding and optimizing the synthetic chemistry leads to deterministic nanowire growth at well-defined locations and bulk quantity production of homogeneous nanowires, both of which greatly facilitate the assembly toward parallel nanowire arrays. Surface chemistry studies reveal that p- and n-type Ge nanowires undergo different oxidation routes and the surface oxide induced states cause opposite band bending for nanowires with different doping. Furthermore, long chain alkanethiols form a dense and uniform protection layer on Ge nanowire surfaces and therefore afford excellent oxidation resistance. Finally, high performance field effect transistors are constructed on Ge nanowires with both thermally grown SiO2 and atomic layer deposited HfO2 as gate dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://public.itrs.net (2005)

  2. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  3. H.J. Dai, Acc. Chem. Res. 35, 1035 (2002)

    Article  Google Scholar 

  4. C.M. Lieber, MRS Bull. 28, 486 (2003)

    Google Scholar 

  5. Y.N. Xia, P.D. Yang, Adv. Mater. 15, 351 (2003)

    Article  Google Scholar 

  6. P.D. Yang, MRS Bull. 30, 85 (2005)

    Google Scholar 

  7. H. Dai, Surf. Sci. 500, 218 (2002)

    Article  Google Scholar 

  8. J.R. Heath, F.K. Legoues, Chem. Phys. Lett. 208, 263 (1993)

    Article  ADS  Google Scholar 

  9. Y.Y. Wu, P.D. Yang, Chem. Mater. 12, 605 (2000)

    Article  Google Scholar 

  10. G. Gu, M. Burghard, G.T. Kim, G.S. Dusberg, P.W. Chiu, V. Krstic, S. Roth, W.Q. Han, J. Appl. Phys. 90, 5747 (2001)

    Article  ADS  Google Scholar 

  11. T. Hanrath, B.A. Korgel, J. Am. Chem. Soc. 124, 1424 (2002)

    Article  Google Scholar 

  12. D.W. Wang, H.J. Dai, Angew. Chem. Int. Edit. 41, 4783 (2002)

    Article  Google Scholar 

  13. D.W. Wang, R. Tu, L. Zhang, H.J. Dai, Angew. Chem. Int. Edit. 44, 2925 (2005)

    Article  Google Scholar 

  14. Y.Y. Wu, P.D. Yang, J. Am. Chem. Soc. 123, 3165 (2001)

    Article  Google Scholar 

  15. ASM Handbook, Alloy Phase Diagram, vol. 3 (1990)

  16. P. Baffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  ADS  Google Scholar 

  17. F. Ercolessi, W. Andreoni, E. Tosatti, Phys. Rev. Lett. 66, 911 (1991)

    Article  ADS  Google Scholar 

  18. M. Wautelet, J.P. Dauchot, M. Hecq, Nanotechnology 11, 6 (2000)

    Article  ADS  Google Scholar 

  19. N.R. Franklin, Y. Li, R.J. Chen, A. Javey, H. Dai, Appl. Phys. Lett. 79, 4571 (2001)

    Article  ADS  Google Scholar 

  20. D.W. Wang, Q. Wang, A. Javey, R. Tu, H.J. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003)

    Article  ADS  Google Scholar 

  21. D.W. Wang, Y.L. Chang, Q. Wang, J. Cao, D.B. Farmer, R.G. Gordon, H.J. Dai, J. Am. Chem. Soc. 126, 11602 (2004)

    Article  Google Scholar 

  22. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287, 622 (2000)

    Article  ADS  Google Scholar 

  23. Y. Cui, Q. Wei, H. Park, C. Lieber, Science 293, 1289 (2001)

    Article  ADS  Google Scholar 

  24. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2001)

    Google Scholar 

  25. R.H. Kingston, Semiconductor Surface Physics (University of Pennsylvania Press, Philadelphia, 1957)

    Google Scholar 

  26. J.S. Hovis, R.J. Hamers, C.M. Greenlief, Surf. Sci. 440, L815 (1999)

    Article  Google Scholar 

  27. N. Tabet, M. Faiz, N.M. Hamdan, Z. Hussain, Surf. Sci. 523, 68 (2003)

    Article  Google Scholar 

  28. X.J. Zhang, G. Xue, A. Agarwal, R. Tsu, M.A. Hasan, J.E. Greene, A. Rockett, J. Vac. Sci. Technol. 11, 2553 (1993)

    Article  ADS  Google Scholar 

  29. K. Prabhakaran, F. Maeda, Y. Watanabe, T. Ogino, Thin Solid Films 369, 289 (2000)

    Article  Google Scholar 

  30. N. Tabet, J. Electron. Spectrosc. Relat. Phenom. 114, 415 (2001)

    Article  Google Scholar 

  31. C.O. Chui, S. Ramanathan, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, IEEE Electr. Dev. Lett. 23, 473 (2002)

    Article  Google Scholar 

  32. G.W. Cullen, J.A. Amick, D. Gerlich, J. Electrochem. Soc. 109, 124 (1962)

    Google Scholar 

  33. J.L. He, Z.H. Lu, S.A. Mitchell, D.D.M. Wayner, J. Am. Chem. Soc. 120, 2660 (1998)

    Article  Google Scholar 

  34. K. Choi, J.M. Buriak, Langmuir 16, 7737 (2000)

    Article  Google Scholar 

  35. S.M. Han, W.R. Ashurst, C. Carraro, R. Maboudian, J. Am. Chem. Soc. 123, 2422 (2001)

    Article  Google Scholar 

  36. Oxide was detected on C12 alkanethiol passivated Ge NWs after 2 days of air exposure

  37. P.E. Laibinis, G.M. Whitesides, J. Am. Chem. Soc. 114, 9022 (1992)

    Article  Google Scholar 

  38. Y. Zhang, A. Chan, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)

    Article  ADS  Google Scholar 

  39. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Nano Lett. 3, 1229 (2003)

    Article  Google Scholar 

  40. D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano. Lett. 3, 1255 (2003)

    Article  Google Scholar 

  41. D.W. Wang, Y.L. Chang, Z. Liu, H.J. Dai, J. Am. Chem. Soc. 127, 11871 (2005)

    Article  Google Scholar 

  42. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  ADS  Google Scholar 

  43. S. Ramo, J.R. Whinnery, T.V. Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994)

    Google Scholar 

  44. S.C. Martin, L.M. Hitt, J.J. Rosenberg, IEEE Electr. Dev. Lett. 10, 325 (1989)

    Article  Google Scholar 

  45. M. Leskela, M. Ritala, Thin Solid Films 409, 138 (2002)

    Article  Google Scholar 

  46. H. Kim, P.C. McIntyre, K.C. Saraswat, Appl. Phys. Lett. 82, 106 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dai.

Additional information

PACS

73.63.-b; 73.63.B6; 73.22.-f; 73.20.At; 73.90.+f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Dai, H. Germanium nanowires: from synthesis, surface chemistry, and assembly to devices. Appl. Phys. A 85, 217–225 (2006). https://doi.org/10.1007/s00339-006-3704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3704-z

Keywords

Navigation