Skip to main content

Advertisement

Log in

Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The influence of the natural variability of the Atlantic meridional overturning circulation (AMOC) on the atmosphere is studied in multi-centennial simulations of six global climate models, using Maximum Covariance Analysis (MCA). In all models, a significant but weak influence of the AMOC changes is found during the Northern Hemisphere cold-season, when the ocean leads the atmosphere by a few years. Although the oceanic pattern slightly varies, an intensification of the AMOC is followed in all models by a weak sea level pressure response that resembles a negative phase of the North Atlantic Oscillation (NAO). The signal amplitude is typically 0.5 hPa and explains about 10% of the yearly variability of the NAO in all models. The atmospheric response seems to be due primarily due to an increase of the heat loss along the North Atlantic Current and the subpolar gyre, associated with an AMOC-driven warming. Sea-ice changes appear to be less important. The stronger heating is associated to a southward shift of the lower-tropospheric baroclinicity and a decrease of the eddy activity in the North Atlantic storm track, which is consistent with the equivalent barotropic perturbation resembling the negative phase of the NAO. This study thus provides some evidence of an atmospheric signature of the AMOC in the cold-season, which may have some implications for the decadal predictability of climate in the North Atlantic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17(5):890–905

    Article  Google Scholar 

  • Balmaseda M, Ferranti L, Molteni F, Palmer T (2010) Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: implications for long-range predictions. Q J R Meteorol Soc 136:1655–1664. doi:10.1002/qj.661

    Article  Google Scholar 

  • Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22(6):701–720

    Article  Google Scholar 

  • Blackmon ML (1976) A climatological spectral study of the 500-mb geopotential height of the northern hemisphere wintertime circulation. J Atmos Sci 33:1607–1623

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5(6):541–560

    Article  Google Scholar 

  • Cassou C, Deser C, Alexander MA (2007) Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J Clim 20(14):3510–3526

    Article  Google Scholar 

  • Collins M et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19(7):1195–1203

    Article  Google Scholar 

  • Compo GP, Sardeshmukh PD (2010) Removing ENSO-related variations from the climate record. J Clim 23(8):1957–1978

    Article  Google Scholar 

  • Cunningham SA et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5N. Science 317(5840):935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  • Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26:2969–2972

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J Clim 15(6):606–623

    Article  Google Scholar 

  • Danabasoglu G (2008) On multidecadal variability of the Atlantic meridional overturning circulation in the community climate system model version 3. J Clim 21(21):5524–5544

    Article  Google Scholar 

  • Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6(11):1993–2011

    Article  Google Scholar 

  • Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13(9):1481–1495

    Article  Google Scholar 

  • Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17(5):877–889

    Article  Google Scholar 

  • Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20(18):4751–4767

    Article  Google Scholar 

  • Deshayes J, Frankignoul C (2008) Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J Clim 21(19):4919–4933

    Article  Google Scholar 

  • Doblas-Reyes FJ, Pastor MA, Casado MJ, Déqué M (2001) Wintertime westward-traveling planetary-scale perturbations over the Euro-Atlantic region. Clim Dyn 17:811–824

    Article  Google Scholar 

  • Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled Ocean-Atmosphere GCM. J Clim 18(8):1117–1135

    Article  Google Scholar 

  • Dufresne J-L et al (2010) IPSL earth system model. Technical report, Institut Pierre Simon Laplace, Paris, France

  • Eden C, Greatbatch RJ (2003) A damped decadal oscillation in the North Atlantic climate system. J Clim 16(24):4043–4060

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14(10):2266–2280

    Article  Google Scholar 

  • Farneti R, Vallis GK (2009) Mechanisms of interdecadal climate variability and the role of ocean-atmosphere coupling. Clim Dyn. doi:10.1007/s00382-009-0674-9

  • Ferreira D, Frankignoul C (2005) The transient atmospheric response to midlatitude SST anomalies. J Clim 18(7):1049–1067

    Article  Google Scholar 

  • Frankcombe LM, von der Heydt A, Dijkstra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23(13):3626–3638

    Article  Google Scholar 

  • Frankignoul C, Kestenare E (2002) The surface heat flux feedback. Part I: estimates from observations in the Atlantic and the North Pacific. Clim Dyn 19:633–647

    Article  Google Scholar 

  • Frankignoul C, Kestenare E (2005) Air-sea interactions in the tropical Atlantic: a view based on lagged rotated maximum covariance analysis. J Clim 18(18):3874–3890

    Article  Google Scholar 

  • Ganachaud C, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  Google Scholar 

  • Griffies SM, Tziperman E (1995) A linear thermohaline oscillator driven by stochastic atmospheric forcing. J Clim 8(10):2440–2453

    Article  Google Scholar 

  • Guan B, Nigam S (2009) Analysis of Atlantic SST variability factoring interbasin links and the secular trend: clarified structure of the Atlantic Multidecadal Oscillation. J Clim 22(15):4228–4240

    Article  Google Scholar 

  • Hodson D, Sutton R, Cassou C, Keenlyside N, Okumura Y, Zhou T (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dyn 34:1041–1058

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips A (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405

    Article  Google Scholar 

  • Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864

    Article  Google Scholar 

  • Hurrell J, Kushnir Y, Visbeck M, Ottersen G (2003) An overview of the North Atlantic oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic oscillation, climatic significance and environmental impact, AGU Geophysical Monograph, vol 134, pp 1–35

  • Hurrell JW, Hoerling MP, Phillips A, Xu T (2004) Twentieth century North Atlantic climate change. Part I: assessing determinism. Clim Dyn 23:371–389

    Article  Google Scholar 

  • Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6(5):723–737

    Article  Google Scholar 

  • Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:1029/2005GL024233

    Article  Google Scholar 

  • Kushnir Y, Seager R, Ting M, Naik N, Nakamura J (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Clim 23(21):5610–5628

    Article  Google Scholar 

  • Kvamstø N, Skeie P, Stephenson D (2004) Impact of Labrador sea-ice extent on the North Atlantic oscillation. Int J Climatol 26:603–612

    Article  Google Scholar 

  • Kwon Y-O, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson LA (2010) Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review. J Clim 23(12):3249–3281

    Article  Google Scholar 

  • Latif M et al (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17(7):1605–1614

    Article  Google Scholar 

  • Lau N-C, Nath MJ (1990) A General Circulation Model study of the atmospheric response to extratropical SST anomalies observed in 1950–79. J Clim 3(9):965–989

    Article  Google Scholar 

  • Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: main features and storm track characteristics of the response. J Clim 17(5):857–876

    Article  Google Scholar 

  • Marti O et al (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26

    Article  Google Scholar 

  • Mathieu P-P, Sutton RT, Dong B, Collins M (2004) Predictability of winter climate over the North Atlantic European region during ENSO events. J Clim 17(10):1953–1974

    Article  Google Scholar 

  • McManus J, Francois R, Gherardi J-M, Keigwin L, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  Google Scholar 

  • Mikolajewicz U, Maier-Reimer E (1990) Internal secular variability in an ocean general circulation model. Clim Dyn 4(3):145–156

    Article  Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209

    Article  Google Scholar 

  • Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62

    Article  Google Scholar 

  • Msadek R, Frankignoul C, Li Z (2011) Mechanisms of the atmospheric response to the North Atlantic multidecadal variability: a model study. Clim Dyn 36(7):1255–1276

    Article  Google Scholar 

  • Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth Clim Ocean Atmos Interact Geophys Monogr 147:329–346

    Article  Google Scholar 

  • Otterå O, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Park S, Deser C, Alexander MA (2005) Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J Clim 18(21):4582–4599

    Article  Google Scholar 

  • Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22(1):71–92

    Article  Google Scholar 

  • Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35:L22703. doi:10.1029/2008GL035779

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim 16(12):1987–2004

    Article  Google Scholar 

  • Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Clim 12(5):1393–1408

    Article  Google Scholar 

  • Penland C, Matrosova L (2006) Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J Clim 19(22):5796–5815

    Article  Google Scholar 

  • Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Clim 19(23):6062–6067

    Article  Google Scholar 

  • Rivière G, Orlanski I (2007) Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J Atmos Sci 64(2):241–266

    Article  Google Scholar 

  • Rodwell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical north Africa (1906–92): observations and modelling. Q J R Meteorol Soc 121:669–704

    Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710. doi:10.1029/2005GL024368

    Article  Google Scholar 

  • Schott FA, Fischer J, Dengler M, Zantopp R (2006) Variability of the deep western boundary current east of the grand banks. Geophys Res Lett 33:L21S07. doi:10.1029/2006GL026563

    Article  Google Scholar 

  • Stouffer RJ et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387

    Article  Google Scholar 

  • Strong C, Magnusdottir G (2010) The role of Rossby wave breaking in shaping the equilibrium atmospheric circulation response to North Atlantic boundary forcing. J Clim 23(6):1269–1276

    Article  Google Scholar 

  • Strong C, Magnusdottir G, Stern H (2009) Observed feedback between winter sea ice and the North Atlantic Oscillation. J Clim 22(22):6021–6032

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20(5):891–907

    Article  Google Scholar 

  • Sutton RW, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11(8):1906–1931

    Article  Google Scholar 

  • Timmermann A et al (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20(19):4899–4919

    Article  Google Scholar 

  • Trenberth KE (1986) An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J Atmos Sci 43(19):2070–2087

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 10:3433–3443

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi:10.1029/2006GL026894

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511

    Article  Google Scholar 

  • Wu L, Li C, Yang C, Xie S-P (2008) Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J Clim 21(12):3002–3019

    Article  Google Scholar 

  • Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic Meridional Overturning Circulation. Geophys Res Lett 35:L20705. doi:10.1029/2008GL035463

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s 7th framework programme (FP7/2007-2013) under grant agreement No. GA212643 (THOR: "Thermohaline Overturning—at Risk", 2008–2012). For CF, support from the Institut Universitaire de France is gratefully acknowledged. We also thank T. Joyce, J. Mignot, and two anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Gastineau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gastineau, G., Frankignoul, C. Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39, 37–57 (2012). https://doi.org/10.1007/s00382-011-1109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1109-y

Keywords

Navigation