Skip to main content
Log in

Internal secular variability in an ocean general circulation model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We describe results of an experiment in which the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was driven by a spatially correlated white-noise freshwater flux superimposed on the climatological fluxes. In addition to the red-noise character of the oceanic response, the model exhibits pronounced variability in a frequency band around 320 years. The centers of action of this oscillation are the Southern Ocean and the Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumgartner A, Reichel E (1975) Die Weltwasserbilanz. Oldenbourg, Munich

    Google Scholar 

  • Berger WH, Vincent E (1986) Sporadic shutdown of North Atlantic deep water production during the Glacial-Holocene transition? Nature 324:53–55

    Google Scholar 

  • Broecker WS, Peteet D, Rind D (1985) Does the ocean atmosphere system have more than one stable mode of operation? Nature 315:21–26

    Google Scholar 

  • Broecker WS, Andree M, Wolfli W, Oeschger H, Bonani G, Kennett J, Peteet D (1988) The chronology of the last deglaciation: implications to the cause of the Younger Dryas event. Paleoceanography 3:1–19

    Google Scholar 

  • Bryan F (1986) High latitude salinity effects and interhemisphere thermohaline circulations. Nature 305:301–304

    Google Scholar 

  • Cox M (1975) A baroclinic numerical model of world ocean. In: Numerical models of ocean circulation. National Academy of Sciences, Washington, pp 107–120

    Google Scholar 

  • Dickson RR, Meincke J, Malmberg S-A, Lee AJ (1988) The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982. Prog Oceanogr 20:103–151

    Google Scholar 

  • Fisher DA (1982) Carbon-14 production compared to oxygen isotope records from Camp Century, Greenland and Devon Island, Canada. Climatic Change 4:419–426

    Google Scholar 

  • Frankignoul C, Hasselmann K (1977) Stochastic climate models. Part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29:289–305

    Google Scholar 

  • Gates WL (1985) Modelling as a means of studying the climate system. In: MacCracken MC, Luther FM (eds) Projecting the climatic effects of increasing carbon dioxide. Department of Energy/ER-0237, pp 57–79, Washington DC

    Google Scholar 

  • Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91:5037–5046

    Google Scholar 

  • Hasselmann K (1976) Stochastic climate models. Part I. Theory. Tellus 28:473–485

    Google Scholar 

  • Hasselmann K (1979) On the signal-to-noise problem in atmospheric response studies. Meteorology of tropical oceans. Royal Meteorological Society, Blacknell, pp 251–259

    Google Scholar 

  • Hasselmann K (1982) An ocean model for climate variability studies. Progr Oceanogr 11:69–92

    Google Scholar 

  • Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error estimates. J Phys Oceanogr 13:1093–1104

    Google Scholar 

  • Herterich K, Hasselmann K (1987) Extraction of mixed layer advection velocities, diffusion coefficients, feedback factors and atmospheric forcing parameters from the statistical analysis of North Pacific SST anomaly fields. J Phys Oceanogr 17:2145–2156

    Google Scholar 

  • Humbold A von (1845) Kosmos. Entwurf einer physischen Weltbeschreibung, vol 1. Cotta'scher, Stuttgart Tübingen

    Google Scholar 

  • Lamb HH (1977) Climate: present past and future, vol 2. Methuen, London

    Google Scholar 

  • Lemke P (1977) Stochastic climate models. Part 3. Application to zonally averaged energy models. Tellus 29:385–392

    Google Scholar 

  • Lemke P, Trinkl EW, Hasselmann K (1980) Stochastic dynamic analysis of polar sea ice variability. J Phys Oceanogr 10:2100–2120

    Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAH Professional Paper 13, Rockville, Md.

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. Climate Dynamics 2:63–90

    Google Scholar 

  • Maier-Reimer E, Mikolajewicz U (1989) Experiments with an OGCM on the cause of the Younger Dryas. In: Ayala-Castanares A, Wooster W, Yanez-Arancibia A (eds) Oceanography 1988. UNAM Press, Mexico, pp 87–100

    Google Scholar 

  • Maier-Reimer E, Mikolajewicz U, Crowley T (1990) Ocean GCM sensitivity experiment with an open Central American isthmus. Paleoceanography 5:349–366

    Google Scholar 

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Climate 1:841–866

    Google Scholar 

  • Marotzke J, Welander P, Willebrand J (1988) Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus 40A:162–172

    Google Scholar 

  • Mikolajewicz U, Santer B, Maier-Reimer E (1990) Ocean response to greenhouse warming. Nature 345:589–593

    Google Scholar 

  • Müller P, Willebrand J (1985) Compressibility effects in the thermohaline circulation: a manifestation of the temperature-salinity mode. Deep Sea Res 33:559–571

    Google Scholar 

  • Reynolds RW (1979) A stochastic forcing model of sea surface temperature anomalies in the North Pacific and North Atlantic. Climatic Res Inst, Rep no 8, Oregon State University, Corvallis

    Google Scholar 

  • Robin G de Q (1980) Climate into ice: the isotopic record in polar ice sheets. In: Allison I (ed) Sea level, ice and climatic change. IAHS Publ 131:207–216

  • Roemmich D, Wunsch C (1985) Two transatlantic sections: meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep Sea Res 32:619–664

    Google Scholar 

  • Rooth C (1982) Hydrology and ocean circulation. Progr Oceanogr 11:131–149

    Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230

    Google Scholar 

  • Welander P (1986) Thermohaline effects in the ocean circulation and related simple models. In: Willebrand J, Anderson DLT (eds) Large-scale transport processes in oceans and atmosphere. Reidel, Dordrecht, pp 163–200

    Google Scholar 

  • Whitworth T, Peterson RG (1985) Volume transport of the Antarctic circumpolar current from bottom pressure measurements. J Phys Oceanogr 15:810–816

    Article  Google Scholar 

  • Wigley T, Raper S (1990) Natural variability of the climate system and detection of the greenhouse effect. In: Schlesinger ME (ed) Proceedings of DOE Workshop on Greenhouse-Gas-Induced Climatic Change. Department of Energy, Washington DC (in press)

    Google Scholar 

  • Woodruff SD, Slutz RJ, Jenne RL, Steurer PM (1987) A comprehensive ocean-atmosphere data set. Bull Am Soc 68:1239–1250

    Google Scholar 

  • Wüst G (1933) Schichtung und Zirkulation des Atlantischen Ozeans. Das Bodenwasser und die Gliederung der Atlantischen Tiefsee. In: Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor” 1925–27, vol 6, pt 1

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikolajewicz, U., Maier-Reimer, E. Internal secular variability in an ocean general circulation model. Climate Dynamics 4, 145–156 (1990). https://doi.org/10.1007/BF00209518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209518

Keywords

Navigation