Skip to main content
Log in

Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Stand-off technology for the remote detection of explosives and their traces on contaminated surfaces is a field of research that has recently gained much interest. Optical methods are well established in applications for counterterrorism because they facilitate analysis without contact between human being and hazardous materials. In this paper, to our knowledge for the first time, a remote stand-off detection system is developed by combination of pulsed laser fragmentation and pulsed mid-infrared laser absorption spectroscopy. Since the absorption of explosives is more efficient for infrared wavelengths laser radiation in the eye safe region around λ=1.47 μm rather than the conventional Nd:YAG laser line at λ=1.06 μm is preferred for the fragmentation. Generated product gases such as nitric oxide are probed by a synchronized distributed feedback quantum cascade laser (DFB-QCL) at λ≈5.3 μm. The ratio of NO and NO2 is a measure to distinguish between energetic and non-energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. López-Moreno, S. Palanco, J. Laserna, F.C. DeLucia Jr., A.W. Miziolek, J. Rose, R.A Walters, A.I. Whitehouse, J. Anal. Atmosph. Spectrom. 21, 55 (2006)

    Article  Google Scholar 

  2. F.C. DeLucia Jr., A.C. Samuels, R.S. Harmon, R.A. Walters, K.L. McNesby, A. LaPointe, R.J. Winkel Jr., A.W. Miziolek, IEEE Sens. J. 5, 681 (2002)

    Article  Google Scholar 

  3. C. Bohling, D. Scheel, K. Hohmann, M. Reuter, G. Holl, W. Schade, Appl. Opt. 45, 3817 (2006)

    Article  ADS  Google Scholar 

  4. F.C. DeLucia, R.S. Harmon, K.L. McNesby, R.J. Winkel, A.W. Miziolek, Appl. Opt. 42, 6148 (2003)

    Article  ADS  Google Scholar 

  5. Y. Wang, Y. Wang, H.Q. Le, Opt. Express 13, 6572 (2005)

    Article  ADS  Google Scholar 

  6. P. Weibring, C. Abrahamsson, M. Sjöholm, J.N. Smith, H. Edner, S. Svanberg, Appl. Phys. B 79, 525 (2004)

    Article  Google Scholar 

  7. M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, Appl. Phys. B 75, 367 (2002)

    Article  ADS  Google Scholar 

  8. J. Cabalo, R. Sausa, Appl. Spectrosc. 57, 1196 (2005)

    Article  ADS  Google Scholar 

  9. T. Arusi-Parpar, D. Heflinger, R. Lavi, Appl. Opt. 40, 6677 (2001)

    Article  ADS  Google Scholar 

  10. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, W. Schade, Opt. Laser Eng. 44, 699 (2006)

    Article  Google Scholar 

  11. C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)

    Article  ADS  Google Scholar 

  12. D. Hofstetter, J. Faist, Top. Appl. Phys. 89, 61 (2003)

    Article  Google Scholar 

  13. D. Weidmann, F.K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, S. Blaser, Appl. Phys. B 79, 907 (2004)

    Article  ADS  Google Scholar 

  14. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 80, 617 (2005)

    Article  ADS  Google Scholar 

  15. A. Elia, P.M. Lugara, C. Giancaspro, Opt. Lett. 30, 988 (2005)

    Article  ADS  Google Scholar 

  16. A.A. Kosterev, F.K. Tittel, IEEE J. Quantum Electron. QE-38, 582 (2002)

    Article  ADS  Google Scholar 

  17. A. Khorsandi, U. Willer, P. Geiser, W. Schade, Appl. Phys. B 77, 509 (2003)

    Article  ADS  Google Scholar 

  18. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  19. M. Stepputat, R. Noll, Appl. Opt. 42, 6199 (2003)

    Article  Google Scholar 

  20. R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H.J.L. van der Steen, M. Angelone, Appl. Phys. B 65, 101 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schade.

Additional information

PACS

42.62.Fi; 07.07.DF; 42.55.Px

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, C., Geiser, P., Burgmeier, J. et al. Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives. Appl. Phys. B 85, 251–256 (2006). https://doi.org/10.1007/s00340-006-2372-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2372-1

Keywords

Navigation