Skip to main content
Log in

Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Development of a pulsed quantum cascade laser (QCL)-based spectroscopic trace-gas sensor for sub-part-per-million detection of nitric oxide (NO) and capable of monitoring other molecular species such as CO2, H2O, and NH3 in industrial combustion exhaust systems is reported. Rapid frequency modulation is applied to the QCL to minimize the influence of fluctuating non-selective absorption. A novel method utilizes only a few laser pulses within a single wavelength scan to probe an absorption spectrum at precisely selected optical frequencies. A high-temperature gas cell was used for laboratory evaluation of the NO sensor performance. A noise-equivalent sensitivity (1σ) of ∼ 100 ppb × m/\(\sqrt{Hz}\) at room temperature and ∼ 200 ppb × m/\(\sqrt{Hz}\) at 630 K was achieved by measuring the NO R(6.5) absorption doublet at 1900.075 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kosterev, F.K. Tittel, IEEE J. Quantum Electron. (Spec. Issue Quantum Cascade Lasers) 38, 582 (2002)

    CAS  Google Scholar 

  2. D. Weidmann, G. Wysocki, C. Oppenheimer, F.K. Tittel, Appl. Phys. B 80, 255 (2005). DOI 10.1007/s00340-004-1639-7

    CAS  Google Scholar 

  3. F.K. Tittel, D. Richter, A. Fried, in Solid-State Mid-Infrared Laser Sources, ed. by I.T. Sorokina, K.L. Vodopyanov (Top. Appl. Phys. 89) (Springer, Berlin Heidelberg New York, 2003), pp. 445-510

  4. H. Gupta, L.-S. Fan, Ind. Eng. Chem. Res. 42, 2536 (2003)

    CAS  Google Scholar 

  5. G.R. Price, K.K. Botros, G.M. Goldin, J. Eng. Gas Turbines Power 124, 276 (2002)

    CAS  Google Scholar 

  6. D.R. Fitz, K. Bumiller, A. Lashgari, Atmos. Environ. 37(Suppl. 2), S119 (2003)

    CAS  Google Scholar 

  7. C. Stroud, S. Madronich, E. Atlas, B. Ridley, F. Flocke, A. Weinheimer, B. Talbot, A. Fried, B. Wert, R. Shetter, B. Lefer, M. Coffey, B. Heikes, D. Blake, Atmos. Environ. 37, 3351 (2003)

    CAS  Google Scholar 

  8. P.E. Silkoff, M. Caramori, L. Tremblay, P. McClean, C. Chaparro, S. Kesten, M. Hutcheon, A.S. Slutsky, N. Zamel, S. Keshavjee, Am. J. Respir. Crit. Care Med. 157, 1822 (1998)

    CAS  PubMed  Google Scholar 

  9. S.A. Kharitonov, P.J. Barnes, Am. J. Respir. Crit. Care Med. 163, 1693 (2001)

    CAS  PubMed  Google Scholar 

  10. T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)

    CAS  Google Scholar 

  11. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    CAS  PubMed  Google Scholar 

  12. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Opt. Lett. 23, 219 (1998)

    CAS  Google Scholar 

  13. A.A. Kosterev, C. Roller, F.K. Tittel, in IEEE Sensors 2003, Toronto, Canada, 22–24 October 2003, Book of Abstracts, pp. 176–177

  14. L.S. Rothman A. Barbe, D. Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quantum Spectrosc. Radiat. Transfer 82, 5 (2003)

    CAS  Google Scholar 

  15. S. Wehe, M. Allen, X. Liu, J. Jeffries, R. Hanson, Sensors. In Proceedings of IEEE, 22–24 October 2003, vol. 2, pp. 795–800

  16. A.A. Kosterev, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, S. Wehe, M.G. Allen, Appl. Opt. 41, 1169 (2002)

    CAS  PubMed  Google Scholar 

  17. G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R.F. Curl, F.K. Tittel, Appl. Opt. 43, 6040 (2004)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wysocki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wysocki, G., Kosterev, A.A. & Tittel, F.K. Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems. Appl. Phys. B 80, 617–625 (2005). https://doi.org/10.1007/s00340-005-1764-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1764-y

PACS

Navigation