Skip to main content
Log in

Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Piezoelectric, pyroelectric, dielectric, elastic and thermoelastic properties of BiB3O6, point group symmetry 2, are reported. The eight independent components of the piezoelectric tensor could be derived from first-order longitudinal and transverse electrostrictive effects, employing a Michelson interferometer. For the determination of the elasticity tensor ultrasonic resonances of plane-parallel plates of different orientations and, in addition, the resonant ultrasound spectra (RUS) of rectangular parallelepipeda were measured. For the evaluation of the elasticity tensor from these resonant frequencies the piezoelectric coupling had to be taken into account. BiB3O6 exhibits a maximum longitudinal piezoelectric effect of 39.5×10-12 mV-1 along the twofold axis, a value about 17 timeslarger than that of α-quartz. The longitudinal elastic stiffness attains a minimum of about 5×1010 N m-2 along the same direction and a maximum perpendicular to the twofold axis of about 33×1010 N m-2, one of the largest elastic anisotropies observed in ionic crystals. This behaviour corresponds to the earlier observed extreme anisotropy of thermal expansion. The phenomena can be qualitatively interpreted by structural details, especially the preferential orientation of the lone electron pair of Bi3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hellwig H, Liebertz J, Bohatý L (1999) Solid State Commun. 109:249

    Article  ADS  Google Scholar 

  2. Hellwig H, Liebertz J, Bohatý L (2000) J. Appl. Phys. 88:240

    Article  ADS  Google Scholar 

  3. Du C, Wang Z, Liu J, Xu X, Teng B, Fu K, Wang J, Liu Y, Shao Z (2001) Appl. Phys. B 73:215

    Article  ADS  Google Scholar 

  4. Wang Z, Teng B, Fu K, Xu X, Song R, Du C, Jiang H, Wang J, Liu Y, Shao Z (2002) Opt. Commun. 202:217

    Article  ADS  Google Scholar 

  5. Kityk IV, Majchrowski A (2004) Opt. Mater. 25:33

    Article  ADS  Google Scholar 

  6. Kaminskii AA, Becker P, Bohatý L, Ueda K, Takaichi K, Hanuza J, Maczka M, Eichler HJ, Gad GMA (2002) Opt. Commun. 206:179

    Article  ADS  Google Scholar 

  7. Becker P, Bohatý L (2001) Cryst. Res. Technol. 36:1175

    Article  Google Scholar 

  8. Kasprowicz D, Runka T, Szybowicz M, Ziobrowski P, Majchrowski A, Michalski E, Drozdowski M (2005) Cryst. Res. Technol. 40:259

    Article  Google Scholar 

  9. Stein W-D, Braden M, Becker P, Bohatý L (2004) Z. Kristallogr. Suppl. 21:82

    Google Scholar 

  10. Stein W-D, Cousson A, Becker P, Bohatý L, Braden M (2005) Z. Kristallogr. Suppl. 22:102

    Google Scholar 

  11. A. Gössling, T. Möller, W.-D. Stein, P. Becker, L. Bohatý, M. Grüninger (2005) Phys. Stat. Sol. (b) 242:R85

    Article  Google Scholar 

  12. Becker P, Liebertz J, Bohatý L (1999) J. Cryst. Growth 203:149

    Article  ADS  Google Scholar 

  13. Fröhlich R, Bohatý L, Liebertz J (1984) Acta Cryst. C 40:343

    Article  Google Scholar 

  14. Bohatý L (1982) Z. Kristallogr. 158:233

    Google Scholar 

  15. Haussühl S (1983) Kristallphysik. Physik-Verlag, Verlag Chemie, Weinheim

    Google Scholar 

  16. Becker P, Ahrweiler S, Held P, Schneeberger H, Bohatý L (2003) Cryst. Res. Technol. 38:881

    Article  Google Scholar 

  17. Byer RL, Roundy CB (1972) Ferroelectrics 3:333

    Article  Google Scholar 

  18. Andeen C, Fontanella J, Schuele D (1970) Rev. Sci. Instr. 41:1573

    Article  ADS  Google Scholar 

  19. Kyame JJ (1949) J. Acoust. Soc. Am. 21:159

    Article  ADS  Google Scholar 

  20. Hutson AR, White DL (1962) J. Appl. Phys. 33:40

    Article  ADS  Google Scholar 

  21. Leisure RG, Willis FA (1997) J. Phys. Condens. Matter 9:6001

    Article  ADS  Google Scholar 

  22. Haussühl S (2001) Plate Modes. In: Levy M, Bass HE, Stern RR (eds) Handbook of elastic properties of solids, liquids, and gases, vol I. Academic Press, San Diego

    Google Scholar 

  23. Siegert H (1989) Z. Kristallogr. 186:274

    Google Scholar 

  24. H. Schneeberger, Pyroelektrische Eigenschaften nicht-ferroelektrischer Kristalle. (PhD-thesis, Ludwig-Maximilians-Universität, Munich 1992)

  25. Haussühl S (1993) Z. Kristallogr. 205:215

    Google Scholar 

  26. Bohatý L, Haussühl S, Liebertz J, Stähr S (1982) Z. Kristallogr. 161:157

    Article  Google Scholar 

  27. Smith-Verdier P, Garcia-Blanco S (1980) Z. Kristallogr. 151:175

    Google Scholar 

  28. Corker DL, Glazer AM (1966) Acta Cryst. B 52:260

    Article  Google Scholar 

  29. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology. New Series Group III, vol 29a. D.F. Nelson (ed) (Springer-Verlag, Berlin, Heidelberg, New York 1992)

  30. Inorganic crystal structure database ICSD for WWW, 2003–2004. (Fachinformationszentrum Karlsruhe 2004)

  31. Gospodinov M, Haussühl S, Svestarov P, Tassev V, Petkov N (1988) Bulg. J. Phys. 15:140

    Google Scholar 

  32. PDF-2, Release 2003, International Centre for Diffraction Data ICDD (Newtown Square, PA, USA 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bohatý.

Additional information

PACS

62.20.Dc; 77.65.Bn; 77.70.+a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haussühl, S., Bohatý, L. & Becker, P. Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6 . Appl. Phys. A 82, 495–502 (2006). https://doi.org/10.1007/s00339-005-3443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3443-6

Keywords

Navigation