Skip to main content
Log in

Investigation and theoretical calculation of the lattice vibrational spectra of BaZrO3 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaZrO3 ceramic was synthesized by the conventional solid-state reaction method. The crystal structures were studied via X-ray diffraction, and lattice vibrational modes were obtained via Raman and Fourier transform far-infrared reflection spectroscopy. The results show that the BaZrO3 ceramic has a cubic perovskite structure. The Raman spectrum was fitted by the Lorentzian function, and the vibrators were assigned. The far-infrared spectrum with active modes was fitted using the four-parameter semiquantum models. Consequently, the modes were assigned as F (1)1u (122 cm−1), F (2)1u (215 cm−1) and F (3)1u (531 cm−1). The Raman vibrator A 1g , which has the highest wavenumber, is dominated by the breath vibration of the ZrO6 octahedron. Infrared modes F (1)1u and F (2)1u have the most contributions to the dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, High-pressure Raman investigation of the Pb-free relaxor BaTi0.65Zr0.35O3. Phys. Rev. B 69, 092104 (2004)

    Article  Google Scholar 

  2. M.L. Moreira, J. Andres, J.A. Varela, E. Longo, Synthesis of fine micro-sized BaZrO3 powders based on a decaoctahedron shape by the microwave-assisted hydrothermal method. Cryst. Growth Des. 9(2), 833–839 (2009)

    Article  Google Scholar 

  3. A. Slodczyk, P. Colomban, D. Lamago, M.H. Limage, F. Romain, S. Willemin, B. Sala, Phase transitions in the H+-conducting perovskite ceramicsby the quasi-elastic neutron and high-pressure Raman scattering. Ionics 14, 215–222 (2008)

    Article  Google Scholar 

  4. M.D. Gonçalves, P.S. Maram, R. Muccillo, A. Navrotsky, Enthalpy of formation and thermodynamic insights into yttrium doped BaZrO3. J. Mater. Chem. A 2, 17840 (2014)

    Article  Google Scholar 

  5. C. Chemarin, N. Rosman, T. Pagnier, G. Lucazeau, A high-pressure Raman study of mixed perovskites BaCexZr1-xO3 (0 ≤ x≤1). J. Solid State Chem. 149, 298–307 (2000)

    Article  Google Scholar 

  6. A. Bisen, A. Satapathy, S. Parida, E. Sinha, S.K. Rout, M. Kar, Structural, optical band gap, microwave dielectric properties and dielectric resonant antenna studies of Ba(1−x)La(2x/3)ZrO3 (0 ≤ x≤0.1) ceramics. J. Alloys Compd. 615, 1006–1012 (2014)

    Article  Google Scholar 

  7. S. Parida, S.K. Rout, L.S. Cavalcante, E. Sinha, M. Siu Li, V. Subramanian, N. Gupta, V.R. Gupta, J.A. Varela, E. Longo, Structural refinement, optical and microwave dielectric properties of BaZrO3. Ceram. Int. 38, 2129–2138 (2012)

    Article  Google Scholar 

  8. P.G. Sundell, M.E. Bjorketun, G. Wahnstrom, Thermodynamics of doping and vacancy formation in BaZrO3 perovskite oxide from density functional calculations. Phys. Rev. B 73, 104112 (2006)

    Article  Google Scholar 

  9. M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, Sol–Gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0:5Zr0:5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes. J. Sol-Gel Sci. Technol. 15, 145–158 (2000)

    Article  Google Scholar 

  10. E.C. Aguiar, A.Z. Simoes, C.A. Paskocimas, M. Cilense, E. Longo, J.A. Varela, Photoluminescence of BaZrO3 explained by a order/disorded transformation. J. Mater. Sci. Mater. Electron. 26, 1993–2001 (2015)

    Article  Google Scholar 

  11. D. Nuzhnyy, J. Petzelt, M. Savinov et al., Broadband dielectric response of Ba(Zr,Ti)O3 ceramics: from incipient via relaxor and diffuse up to classical ferroelectric behavior. Phys. Rev. B 86(1), 014106 (2012)

    Article  Google Scholar 

  12. J.W. Bennett, I. Grinberg, A.M. Rappe, Effect of symmetry lowering on the dielectric response of BaZrO3. Phys. Rev. B 73(18), 180102 (2006)

    Article  Google Scholar 

  13. M.A. Helal, T. Mori, S. Kojima, Softening of infrared-active mode of perovskite BaZrO3 proved by terahertz time-domain spectroscopy. Appl. Phys. Lett. 106(18), 182904 (2015)

    Article  Google Scholar 

  14. Y.S. Zhao, D.J. Weidner, Thermal expansion of SrZrO3 and BaZrO3 perovskites. Phys. Chem. Miner. 18, 294–301 (1991)

    Article  Google Scholar 

  15. C.L. Diao, C.H. Wang, J. Lu, F. Shi, X.P. Jing, First-principle calculation and assignment for vibrational spectra of Ba(Mg1/2W1/2)O3 microwave dielectric ceramic. J. Am. Ceram. Soc. 96(9), 2898–2905 (2013)

    Article  Google Scholar 

  16. M. Ferrari, L. Lutterotti, Method for the simultaneous determination of anisotropic residual stresses and texture by X-ray diffraction. J. Appl. Phys. 76(11), 7246–7255 (1994)

    Article  Google Scholar 

  17. P.I. Dahl, H.L. Lein, Y. Yu, J. Tolchard, T. Grande, M. Einarsrud, Microstructural characterization and electrical properties of spray pyrolyzed conventionally sintered or hot-pressed BaZrO3 and BaZr0.9Y0.1O3−δ. Solid State Ion. 182, 32–40 (2011)

    Article  Google Scholar 

  18. N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, Raman spectral studies of Zr4+-rich BaZrxTi1−xO3 (0.5 ≤ x ≤ 1.00) phase diagram. J. Raman Spectrosc. 40(4), 370–375 (2009)

    Article  Google Scholar 

  19. P. Colomban, A. Slodczyk, Raman intensity: an important tool in the study of nanomaterials and nanostructures. Acta Phys. Pol. A 116(1), 7–12 (2009)

    Article  Google Scholar 

  20. S. Kamba, H. Hughes, D. Noujni, S. Surendran, R.C. Pullar, P. Samoukhina, J. Petzelt, R. Freer, N.M. Alford, D.M. Iddles, Relationship between microwave and lattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectric ceramics. J. Phys. D App. Phys. 37, 1980–1986 (2004)

    Article  Google Scholar 

  21. Y. Li, X.P. Gao, G.R. Li, G.L. Pan, T.Y. Yan, H.Y. Zhu, Titanate nanofiber reactivity: fabrication of MTiO3 (M=Ca, Sr, and Ba) perovskite oxides. J. Phys. Chem. C 113, 4386–4394 (2009)

    Article  Google Scholar 

  22. D. Nuzhnyy, J. Petzelt, M. Savinov, T. Ostapchuk, V. Bovtun, Broadband dielectric response of Ba(Zr,Ti)O3 ceramics: from incipient via relaxor and diffuse up to classical ferroelectric behavior. Phy. Rev. B 86(1), 014106 (2012)

    Article  Google Scholar 

  23. M.A. Helal, T. Mori, S. Kojima, Softening of infrared-active mode of perovskite BaZrO3 proved by terahertz time-domain spectroscopy. Appl. Phys. Lett. 106, 182904 (2015)

    Article  Google Scholar 

  24. C. Ostos, L. Mestres, M.L. Martinez-Sarrion, J.E. Garcia, A. Albareda, R. Perez, Synthesis and characterization of A-site deficient rare-earth doped BaZrxTi1−xO3 perovskite-type compounds. Solid State Sci. 11(5), 1016–1022 (2009)

    Article  Google Scholar 

  25. H.P. Kumar, C. Vijayakumar, C.N. George, S. Solomon, R. Jose, J.K. Thomas, J. Koshy, Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process. J. Alloys Compd. 458(1), 528–531 (2008)

    Article  Google Scholar 

  26. F. Shi, S.H. Wu, The study on structure and dielectric properties of Ba(Zn1/3Nb2/3)O3-BaZrO3 system. Piezoelectr. Acoustoopt. 25(6), 480–482 (2003). (in Chinese)

    Google Scholar 

  27. J.W. Bennett, I. Grinberg, A.M. Rappe, Effect of symmetry lowering on the dielectric response of BaZrO3. Phys. Rev. B 73(18), 180102(R) (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61501409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of this manuscript.

Additional information

Feng Shi and Helei Dong contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Dong, H., Liu, Q. et al. Investigation and theoretical calculation of the lattice vibrational spectra of BaZrO3 ceramic. J Mater Sci: Mater Electron 28, 3467–3473 (2017). https://doi.org/10.1007/s10854-016-5944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5944-9

Keywords

Navigation