Skip to main content
Log in

Aliovalent MnTi and GaTi substitution in high-temperature piezoelectric (x)Bi(Zn0.5Zr0.5)O3—(y)BiScO3—(100 – x − y)PbTiO3

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aliovalent substitution of 1–2 % Mn and Ga for Ti has been carried out in the high-temperature ternary system (x)Bi(Zn0.5Zr0.5)O3y)BiScO3—(100−xy)PbTiO3 near the morphotropic phase boundary, specifically 2.5BZZ-37.5BS-60PT in an attempt to reduce the loss tangent. Modifications of this particular composition were chosen due its high-Curie temperature of 420 °C and excellent piezoelectric coefficient of 520 pm/V. Dielectric, piezoelectric, and electromechanical properties were characterized as a function of temperature, frequency, and electric field for all compositions. Small concentrations of Mn and Ga were shown to increase both the electrical and mechanical quality factors, with a Q m and Q e of 300 and 150, respectively, from room temperature up to 300 °C for Mn-doped compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Shrout TR, Eitel RE, Randall CA (2002) In: Setter N (ed) High performance, high temperature perovskite piezoelectric ceramics. piezoelectric materials in devices, vol 1. EPFL Swiss Federal Institute of Technology, Lausanne, p 413

    Google Scholar 

  2. Park SE, Shrout T (1997) Relaxor based ferroelectric single crystals for electro-mechanical actuators. Mater Res Innovat 1(1):20–25

    Article  Google Scholar 

  3. Eitel RE, Zhang SJ, Shrout TR, Randall CA (2004) Phase diagram of the perovskite System, (1 − x)BiScO3-xPbTiO3. J App Phys. 96(5):2828–2831

    Article  Google Scholar 

  4. Zhang S, Xia R, Randall C, Shrout T, Duan R, Speyer R (2005) Dielectric and piezoelectric properties of niobium-modified BiInO3–PbTiO3 perovskite ceramics with high Curie temperatures. J Mater Res 20(8):2067–2071

    Article  Google Scholar 

  5. Cheng J, Zhu W, Li N, Cross LE (2003) Fabrication and characterization of xBiGaO3–(1-x)PbTiO3: a high temperature reduced Pb-content piezoelectric ceramic materials. Letters 57:2090–2094

    Google Scholar 

  6. Ansell T, Cann D (2012) High temperature piezoelectric ceramics based on (1-x)[BiScO3 + Bi(Ni1/2Ti1/2)O3]–xPbTiO3. Mater Lett 80:87–90

    Article  Google Scholar 

  7. Stringer C, Donnelly N, Shrout T, Randall C, Alberta E, Hackenberger W (2008) Dielectric characteristics of perovskite-structured high-temperature relaxor ferroelectrics: the BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system. J Am Ceram Soc 91(6):1781–1787

    Article  Google Scholar 

  8. Drahus M, Jakes P, Erdem E, Schaab S, Chen J, Ozerov M, Zvyagin S, Eichel R (2011) Manganese-doped (1 − x)BiScO3xPbTiO3 high-temperature ferroelectrics: defect structure and mechanism of enhanced electric resistivity. Phys Rev B 84:064113

    Article  Google Scholar 

  9. Zhang S, Alberta E, Member R, Eitel C, Randall T Shrout (2005) Elastic, piezoelectric, and dielectric characterization of modified BiScO3–PbTiO3 ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 52(11):2131–2139

    Article  Google Scholar 

  10. Chen J, Jin G, Wang C, Cheng J (2014) Reduced dielectric loss and strain hysteresis in Fe and Mn comodified high-temperature BiScO3–PbTiO3 Ceramics. J Am Ceram Soc 97(12):3890–3896

    Article  Google Scholar 

  11. Sehirlioglu A, Sayir A, Dynys F (2010) doping of BiScO3–PbTiO3 ceramics for enhanced properties. J Am Ceram Soc 93(6):1718–1724

    Google Scholar 

  12. Hu Z, Chen J, Li M, Li X, Liu G, Dong S (2011) Morphotropic phase boundary and high temperature dielectric, piezoelectric, and ferroelectric properties of (1 − x)Bi(Sc3/4In1/4)O3-xPbTiO3 ceramics. J App Phys. 110:064102

    Article  Google Scholar 

  13. Yao Z, Liu H, Liu Y, Wu Z, Cao M, Hao H (2008) High-temperature relaxor cobalt-doped (1 x) Bi Sc O3xPb Ti O3 piezoelectric ceramics. Appl Phys Lett 92:142905

    Article  Google Scholar 

  14. Sehirlioglu A, Sayir A, Dynys F, Nittala K, Jones J (2011) Structure and piezoelectric properties near the bismuth scandium oxide-lead zirconate–lead titanate ternary morphotropic phase boundary. J Am Ceram Soc 94(3):788–795

    Article  Google Scholar 

  15. Kowalski B, Sehirlioglu A (2014) Characterization of the high-temperature ferroelectric (100 − x − y)BiScO3–(x)Bi(Zr0.5Zn0.5)O3–(y)PbTiO3 perovskite ternary solid solution. J. Am. Cer. Soc. 97:490–497

    Article  Google Scholar 

  16. Kang H, Chen J, Liu L, Fang L, Xing X (2013) Temperature dependences of the ferroelectric and dielectric properties of high curie temperature PbTiO3–BiScO3–Bi(Zn1/2Zr1/2)O3. Mat Res. Bull. 48(5):2006–2009

    Article  Google Scholar 

  17. Jaffe B, Cook W, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York

    Google Scholar 

  18. Morozov M, Damjanovic D (2010) Charge migration in Pb(Zr, Ti)O3 ceramics and its relation to ageing, hardening and Softening. J Appl Phys 107:034106

    Article  Google Scholar 

  19. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta cryst. B25:925–945

    Article  Google Scholar 

  20. Yao Z, Liu H, Cao M, Hao H, Yu Z (2011) Effects of Mn doping on the structure and electrical properties of high-temperature BiScO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics. Mater Res Bull. 46:1257–1261

    Article  Google Scholar 

  21. Sakaki C, Newalkar B, Komarneni S, Uchino K (2001) Grain size dependence of high power piezoelectric characteristics in Nb doped lead zirconate titanate oxide ceramics. Jpn J Appl Phys. 40:6907–6910

    Article  Google Scholar 

  22. Woodward D, Reaney I (2004) A structural study of ceramics in the (BiMnO3)x–(PbTiO3)1−x solid solution series. J Phys: condens Matter 16:8823–8834

    Google Scholar 

  23. Chen Y (2013) Electrical properties of Bi(In, Ga, Sc)O3-PbTiO3 piezoelectric ceramics. Appl Mech Mater 364:794

    Article  Google Scholar 

  24. Li Y, Yuan J, Wang D, Zhang D, Jin H, Cao M (2013) Effects of Nb, Mn doping on the structure, piezoelectric, and dielectric Properties of 0.8Pb(Sn0.46Ti0.54)O3–0.2Pb(Mg1/3Nb2/3)O3 piezoelectric ceramics. J Am Ceram Soc 96(11):3440–3447

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Tom Sabo and Jon Mackey at Case Western Reserve University for the help provided during the research for this work.

Funding

Funding for this work was made by possible by NASA GSRP Fellowship NNX11AL17H with additional funding provided by AFOSR FA9550-0601-1-0260.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kowalski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalski, B., Sayir, A. & Sehirlioglu, A. Aliovalent MnTi and GaTi substitution in high-temperature piezoelectric (x)Bi(Zn0.5Zr0.5)O3—(y)BiScO3—(100 – x − y)PbTiO3 . J Mater Sci 51, 6761–6769 (2016). https://doi.org/10.1007/s10853-016-9963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9963-y

Keywords

Navigation