Skip to main content

Advertisement

Log in

Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

To identify genes induced during Pseudoperonospora cubensis (Berk. and Curk.) Rostov. infection in cucumber (Cucumis sativus L.), the suppression subtractive hybridization (SSH) was performed using mixed cDNAs prepared from cucumber seedlings inoculated with the pathogen as a tester and cDNA from uninfected cucumber seedlings as a driver. A forward subtractive cDNA library (FSL) and a reverse subtractive cDNA library (RSL) were constructed, from which 1,416 and 1,128 recombinant clones were isolated, respectively. Differential screening of the preferentially expressed recombinant clones identified 58 unique expressed sequence tags (ESTs) from FSL and 29 from RSL. The ESTs with significant protein homology were sorted into 13 functional categories involved in nearly the whole process of plant defense such as signal transduction and cell defense, transcription, cell cycle and DNA processing, protein synthesis, protein fate, proteins with binding functions, transport, metabolism and energy. The expressions of twenty-five ESTs by real-time quantitative RT–PCR confirmed that differential gene regulation occurred during P. cubensis infection and inferred that higher and earlier expression of transcription factors and signal transduction associated genes together with ubiquitin/proteasome and polyamine biosynthesis pathways may contribute to the defense response of cucumber to P. cubensis infection. The transcription profiling of selected down-regulated genes revealed that suppression of the genes in reactive oxygen species scavenging system and photosynthesis pathway may inhibit disease development in the host tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ESTs:

Expressed sequence tags

FSL:

Forward subtractive library

qRT–PCR:

Real-time quantitative RT–PCR

ROS:

Reactive oxygen species

RT–PCR:

Reverse transcription-polymerase chain reaction

RSL:

Reverse subtractive library

SSH:

Suppression subtractive hybridization

References

  • Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323:72–78. doi:10.1016/j.bbrc.2004.08.056

    Article  CAS  PubMed  Google Scholar 

  • Birch PRJ, Armstrong M, Bos J, Boevink P, Gilroy EM, Taylor RM, Wawra S, Pritchard L, Conti L, Ewan R, Whisson SC, van West P, Sadanandom A, Kamoun S (2009) Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. J Exp Bot 60:1133–1140. doi:10.1093/jxb/ern353

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Du L, Chen Z (2003) Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol 53:61–74. doi:10.1023/B:PLAN.0000009265.72567.58

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single step methods of RNA isolation by acid guainidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1016/0003-2697(87)90021-2

    Article  CAS  PubMed  Google Scholar 

  • Das S, DeMason DA, Ehlers JD, Close TJ, Roberts PA (2008) Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J Exp Bot 59:1305–1313. doi:1010.1007/s00438-005-1136-73/jxb/ern036

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt J, Al-Masri AN, Kürkcüoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 273:326–335. doi:10.1007/s00438-005-1136-7

    Article  CAS  PubMed  Google Scholar 

  • Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  CAS  PubMed  Google Scholar 

  • Doruchowski RW, Lakowska-Ryk E (1992) Inheritance of resistance to downy mildew (Pseudoperonospora cubensis Berk. and Curt.) in Cucumis sativus. In: Proceedings of the fifth Eucarpia symposium, Poland, pp 27–31, 132–138

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822. doi:10.1093/aob/mcl255

    Article  CAS  PubMed  Google Scholar 

  • Fanourakis N, Simon PW (1987) Analysis of genetic linkage in the cucumber. J Hered 78:238–242

    Google Scholar 

  • Gietl C, Schmid M (2001) Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Naturwissenschaften 88:49–58. doi:10.1007/s001140000203

    Article  CAS  PubMed  Google Scholar 

  • Goritschnig S, Zhang Y, Li X (2007) The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant J 49:540–551. doi:10.1111/j.1365-313X.2006.02978.x

    Article  CAS  PubMed  Google Scholar 

  • Horejsi T, Staub JE, Thomas C (2000) Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 115:105–113. doi:10.1023/A:1003942228323

    Article  CAS  Google Scholar 

  • Hu XL, Jiang MY, Zhang JH, Zhang AY, Lin F, Tan MP (2007) Calcium–calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38. doi:10.1111/j.1469-8137.2006.01888.x

    Article  CAS  PubMed  Google Scholar 

  • Iwai T, Miyasaka A, Seo S, Ohashi Y (2006) Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol 142:1202–1215. doi:10.1104/pp.106.085258

    Article  CAS  PubMed  Google Scholar 

  • Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ (1994) Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet 89:42–48. doi:10.1007/BF00226980

    CAS  Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–451. doi:10.1038/416447a

    Article  CAS  PubMed  Google Scholar 

  • Kottapalli KR, Rakwal R, Satoh K, Shibato J, Kottalli P, Iwahashi H, Kikuchi S (2007) Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas. Plant Physiol Bioch 45:834–850. doi:10.1016/j.plaphy.2007.07.013

    Article  CAS  Google Scholar 

  • Lebeda A (1991) Resistance in muskmelons to Czchoslovak isolates of Pseudoperonospora cubensis from cucumbers. Sci Hortic 45:255–260. doi:10.1016/0304-4238(91)90071-6

    Article  Google Scholar 

  • Moschou PN, Sarris PF, Skandalis N, Andriopoulou AH, Paschalidis KA, Panopoulos NJ, Roubelakis-Angelakis KA (2009) Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiol 149:1970–1981. doi:10.1104/pp.108.134932

    Article  CAS  PubMed  Google Scholar 

  • Okinaka Y, Yang CH, Herman E, Kinney A, Keen NT (2002) The P34 syringolide elicitor receptor interacts with a soybean photorespiration enzyme, NADH-dependent hydroxypiruvate reductase. Mol Plant Microbe Interact 15:1213–1218. doi:10.1094/MPMI.2002.15.12.1213

    Article  CAS  PubMed  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655. doi:10.1104/pp.109.138990

    Article  CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. doi:10.1016/S0304-3940(02)01423-4

    Article  CAS  PubMed  Google Scholar 

  • Schaller A, Ryan CA (1996) Systemin—a polypeptide defense signal in plants. BioEssays 18:27–33. doi:10.1002/bies.950180108

    Article  CAS  PubMed  Google Scholar 

  • Scharte J, Schön H, Weis E (2005) Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ 28:1421–1435. doi:10.1111/j.1365-3040.2005.01380.x

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense response in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninc P, Kawai J, Hayashizaki Y, Shinozaki K (2000) Monitoring the expression profiles of ca. 7000 Arabidopsis genes under drought, cold, and high-salinity stress using a full-length cDNA microarray. Plant J 31:279–292. doi:10.1046/j.1365-313X.2002.01359.x

    Article  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184. doi:10.1105/tpc.016352

    Article  CAS  PubMed  Google Scholar 

  • Thomas CE (1986) Downy and powdery mildew resistant muskmelon breeding line MR-1. HortScience 21:329

    Google Scholar 

  • Tian ZD, Liu J, Xie CH (2003) Isolation of resistance related-genes to Phytophthora infestans with suppression subtractive hybridization in the R-gene free potato. Acta Genet Sin 30:597–605

    CAS  PubMed  Google Scholar 

  • Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1–1 in parsley. Plant Cell 16:2573–2585. doi:10.1105/tpc.104.024810

    Article  CAS  PubMed  Google Scholar 

  • van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, MacLean D, Takken FLW, Jones JDG (2008) The F-box protein ACRE189/ACIF1 regulates cell death and defence responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20:697–719. doi:10.1105/tpc.107.056978

    Article  PubMed  Google Scholar 

  • Wan H, Zhao Z, Malik AA, Qian C, Chen J (2010) Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC plant biology 10:186. doi:10.1186/1471-2229-10-186

    Article  PubMed  Google Scholar 

  • Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, DeLeon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18:3635–3646. doi:10.1105/tpc.106.046730

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102. doi:10.1073/pnas.052564899

    Article  CAS  PubMed  Google Scholar 

  • Yang GP, Ross DT, Kang WW, Brown PO, Weigel RJ (1999) Combining SSH and cDNA microarray for rapid identification of differentially expressed genes. Nucleic Acids Res 27:1517–1523. doi:10.1093/nar/27.6.1517

    Article  CAS  PubMed  Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides active nitric oxide synthase (NOS) and induce defence genes. Proc Natl Acad Sci USA 101:15811–15816. doi:10.1073/pnas.0404536101

    Article  CAS  PubMed  Google Scholar 

  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808. doi:10.1105/tpc.104.0251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Project of China (2007AA10Z177) and Key Projects in the National Science & Technology Pillar Program during Eleventh Five-Year Plan (2009BADB8B02). Authors are grateful to Dr. Tian Zhengdong and Dr. Song Botao from Huazhong Agricultural University for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Hua Xie.

Additional information

Communicated by C. Quiros.

A contribution to the Special Issue: Plant Biotechnology in Support of the Millennium Development Goals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

A representative sample of reverse Northern dot blot screening of clones from the forward subtractive library. A represents the result of membrane hybridization with the tester probe. B represents the result of membrane hybridization with the driver probe. A 18s ribosomal cDNA was used as the positive control (a 1, a 2, a 3, a 10, a 11, a 12, f 4, f 5, f 6, f 7, f 8, f 9, k 1, k 2, k 3, k 10, k 11, k 12), and ddH2O as the negative control (a 4, a 5, a 6, a 7, a 8, a 9, f 1, f 2, f 3, f 10, f 11, f 12, k 4, k 5, k 6, k 7, k 8, k 9). The circles indicate the corresponding clones enriched after inoculation (TIFF 282 kb)

Supplementary Fig. 2

Functional categories of (A) up- and (B) down-regulated genes in resistant inbred line IL57 after infection with Pseudoperonospora cubensis (DOC 59 kb)

Supplementary Fig. 3

Photorespiratory pathway and C3 carbon cycle induced in resistant inbred line IL57 under Pseudoperonospora cubensis infection. The mRNA expression level were validated by real-time quantitative RT-PCR for gene 6P03 encoding Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), 7F08 encoding aminotransferase and 7J03 encoding NAD+- hydroxypyruvate reductase. GLK, glycerate kinase; GLO, glycolate oxidase; 2-PHP, 2-phosphoglycolate phosphatase; SHM, serine hydroxymethyltransferase (DOC 93 kb)

Supplementary Table 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JW., Liu, J., Zhang, H. et al. Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber. Plant Cell Rep 30, 345–357 (2011). https://doi.org/10.1007/s00299-010-0959-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0959-9

Keywords

Navigation