Skip to main content
Log in

Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During alcoholic fermentation, higher alcohols, esters, and acids are formed from amino acids via the Ehrlich pathway by yeast, but many of the genes encoding the enzymes have not yet been identified. When the BAT1/2 genes, encoding transaminases that deaminate amino acids in the first step of the Ehrlich pathway are deleted, higher metabolite formation is significantly decreased. Screening yeast strains with deletions of genes encoding decarboxylases, dehydrogenases, and reductases revealed nine genes whose absence had the most significant impact on higher alcohol production. The seven most promising genes (AAD6, BAT2, HOM2, PAD1, PRO2, SPE1, and THI3) were further investigated by constructing double- and triple-deletion mutants. All double-deletion strains showed a greater decrease in isobutanol, isoamyl alcohol, isobutyric, and isovaleric acid production than the corresponding single deletion strains with the double-deletion strains in combination with ∆bat2 and the ∆hom2-∆aad6 strain revealing the greatest impact. BAT2 is the dominant gene in these deletion strains and this suggests the initial transaminase step of the Ehrlich pathway is rate-limiting. The triple-deletion strains in combination with BAT2 (∆bat2-∆thi3-∆aad6 and ∆bat2-∆thi3-∆hom2) had the greatest impact on the end metabolite production with the exception of isoamyl alcohol and isovaleric acid. The strain deleted for two dehydrogenases and a reductase (∆hom2-∆pro2-∆aad6) had a greater effect on the levels of these two compounds. This study contributes to the elucidation of the Ehrlich pathway and its significance for aroma production by fermenting yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe F, Horikoshi K (2005) Enhanced production of isoamyl alcohol and isoamyl acetate by ubiquitination-deficient Saccharomyces cerevisiae mutants. Cell Mol Biol Lett 10:383–388

    CAS  Google Scholar 

  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187

    Article  CAS  Google Scholar 

  • Antonelli A, Castellari L, Zambonelli C, Carnacini A (1999) Yeast influence on volatile composition of wines. J Agric Food Chem 47:1139–1144

    Article  CAS  Google Scholar 

  • Ardö Y (2006) Flavour formation by amino acid catabolism. Biotechnol Adv 24:238–242

    Article  Google Scholar 

  • Arevalo-Rodriguez M, Pan X, Boeke JD, Heitman J (2004) FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation. Eukaryot Cell 3:1287–1296

    Article  CAS  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (eds) (2003) Current protocols in molecular biology. Wiley, New York, NY

    Google Scholar 

  • Bakker BM, Bro C, Kötter P, Luttik MA, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737

    Article  CAS  Google Scholar 

  • Bakker BM, Overkamp KM, van Maris AJ, Kötter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  CAS  Google Scholar 

  • Berben G, Dumont J, Gilliquet V, Bolle PA, Hilger F (1991) The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7:475–477

    Article  CAS  Google Scholar 

  • Boulton R, Singleton V, Bisson L, Kunkee R (1995) Principles and practices of winemaking. Chapman Hall, New York, NY

    Google Scholar 

  • Brandriss M (1979) Isolation and preliminary characterization of Saccharomyces cerevisiae proline auxotrophs. J Bacteriol 138:816–822

    CAS  Google Scholar 

  • Chen EC-H (1977) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. J Am Soc Brew Chem 36:39–43

    Google Scholar 

  • Delneri D, Gardner DC, Oliver SG (1999) Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. Genetics 153:1591–1600

    CAS  Google Scholar 

  • De Smidt O, du Preez JC, Albertyn J (2008) The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res 8:967–978

    Article  Google Scholar 

  • Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–25756

    Article  CAS  Google Scholar 

  • Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJE (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    Article  CAS  Google Scholar 

  • Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Lett 326:29–32

    Article  CAS  Google Scholar 

  • Dickinson JR, Salgado L, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034

    Article  CAS  Google Scholar 

  • Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branch-chain amino acid transferases. J Biol Chem 271:20242–20245

    Article  CAS  Google Scholar 

  • Fonzi WA, Sypherd PS (1987) The gene and the primary structure of ornithine decarboxylase from Saccharomyces cerevisiae. J Biol Chem 262:10127–10133

    CAS  Google Scholar 

  • Hazelwood L, Daran JM, Van Maris AJ, Pronk JT, Dickinson JA (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  Google Scholar 

  • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219

    Article  CAS  Google Scholar 

  • Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transferases from yeast homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458–24464

    Article  CAS  Google Scholar 

  • Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  • Larsson S, Nilvebrant NO, Jönsson LJ (2001) Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol 57:167–174

    CAS  Google Scholar 

  • Lee S-J, Rathbone D, Asimont S, Adden R, Ebeler S (2004) Dynamic changes in ester formation during chardonnay juice fermentations with different yeast inoculation and initial Brix conditions. Amer J Enol Vitic 55:346–354

    CAS  Google Scholar 

  • Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS (2006) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6:726–743

    Article  CAS  Google Scholar 

  • Majdak A, Herjavec S, Orlic S, Redzepovic S, Mirosevic N (2002) Comparison of wine aroma compounds produced by Saccharomyces paradoxus and Saccharomyces cerevisiae strains. Food Technol Biotechnol 40:103–109

    CAS  Google Scholar 

  • McNemar MD, Gorman JA, Buckley HR (1997) Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a speΔ strain of Saccharomyces cerevisiae. Yeast 13:1383–1389

    Article  CAS  Google Scholar 

  • Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 276:147–161

    Article  CAS  Google Scholar 

  • Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992) A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae. J Bacteriol 174:4701–4706

    CAS  Google Scholar 

  • Nosaka K, Onozuka M, Konno M, Akaji K (2008) Thiamin-dependent transactivation activity of PDC2 in Saccharomyces cerevisiae. FEBS Lett 582:3991–3996

    Article  CAS  Google Scholar 

  • Quilter M, Hurley J, Lynch F, Murphy M (2003) The production of isoamyl acetate from amyl alcohol by Saccharomyces cerevisiae. J Inst Brew 109:34–40

    Article  CAS  Google Scholar 

  • Overkamp KM, Bakker BM, Kötter P, van Tuijl A, de Vries S, van Dijken JP, Pronk JT (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182:2823–2830

    Article  CAS  Google Scholar 

  • Pretorius IS, Bauer FF (2002) Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotech 20:426–432

    Article  CAS  Google Scholar 

  • Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180

    Article  CAS  Google Scholar 

  • Rossouw D, Naes T, Bauer FF (2008) Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics 9:530

    Article  Google Scholar 

  • Saito K, Thiele DJ, Davio M, Lockridge O, Massey V (1991) The cloning and expression of a gene encoding Old Yellow Enzyme from Saccharomyces carlsbergensis. J Biol Chem 266:20720–20724

    CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Smit A, Cordero Otero RR, Lambrechts MG, Pretorius IS, Van Rensburg P (2003) Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae. J Agric Food Chem 51:4909–4915

    Article  CAS  Google Scholar 

  • Spector D, Labarre J, Toledano MB (2001) A genetic investigation of the essential role of glutathione: mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem 276:7001–7016

    Article  Google Scholar 

  • Styger G, Jacobson D, Bauer FF (2011) Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 91:713–730

    Article  CAS  Google Scholar 

  • Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255–270

    Article  CAS  Google Scholar 

  • Thierry A, Maillard M-B, Yvon M (2002) Conversion of l-leucine to isovaleric acid by Propionibacterium freudenreichii TL 34 and ITGP23. Appl Environ Microbiol 68:608–615

    Article  CAS  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1991) The synthesis of the two S-adenosyl-methionine synthetases is differently regulated in Saccharomyces cerevisiae. Mol Gen Genet 226:224–232

    Article  CAS  Google Scholar 

  • Trotter EW, Collinson EJ, Dawes IW, Grant CM (2006) Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 72:4885–4892

    Article  CAS  Google Scholar 

  • Van Dijken JP, Scheffers W (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    Google Scholar 

  • Vanderhaegen B, Neven H, Coghe S, Verstrepen K, Verachtert H, Derdelinckx G (2003) Evolution of chemical and sensory properties during aging of top-fermented beer. J Agric Food Chem 51:6782–6790

    Article  CAS  Google Scholar 

  • Vidrih R, Hribar J (1999) Synthesis of higher alcohols during cider processing. Food Chem 67:287–294

    Article  CAS  Google Scholar 

  • Volbrecht D, Radler F (1973) Formation of higher alcohols by amino acid deficient mutants of Saccharomyces cerevisiae. I. The decomposition of amino acids to higher alcohols. Arch Mikrobiol 94:351–358

    Article  Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse S (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55

    Article  CAS  Google Scholar 

  • Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147

    Article  CAS  Google Scholar 

  • Yoshimoto H, Fukushige T, Yonezawa T, Sone H (2002) Genetic and physiological analysis of branched-chain alcohols and isoamyl acetate production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:501–508

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation, South Africa. The authors thank Andreas Tredoux for technical assistance and Martin Kidd for statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian F. Bauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Styger, G., Jacobson, D., Prior, B.A. et al. Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae . Appl Microbiol Biotechnol 97, 4429–4442 (2013). https://doi.org/10.1007/s00253-012-4522-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4522-1

Keywords

Navigation