Skip to main content
Log in

Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During alcoholic fermentation, many volatile aroma compounds are formed by Saccharomyces cerevisiae, including esters, fatty acids, and higher alcohols. While the metabolic network that leads to the formation of these compounds is reasonably well mapped, surprisingly little is known about specific enzymes involved in specific reactions, the regulation of the network, and the physiological roles of individual pathways within the network. Furthermore, different yeast strains tend to produce significantly different aroma profiles. These differences are of tremendous biotechnological interest, since producers of alcoholic beverages such as wine and beer are searching for means to diversify and improve their product range. Various factors such as the redox, energy, and nutritional balance of a cell have previously been suggested to directly or indirectly affect and regulate the network. To gain a better understanding of the regulations and physiological role of this network, we screened a subset of the EUROSCARF strain deletion library for genes that, when deleted, would impact most significantly on the aroma profile produced under fermentative conditions. The 10 genes whose deletion impacted most significantly on higher alcohol production were selected and further characterized to assess their mode of action within or on this metabolic network. This is the first description of a large-scale screening approach using aroma production as the primary selection criteria, and the data suggest that many of the identified genes indeed play central and direct roles within the aroma production network of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albertyn J, van Tonder A, Prior BA (1992) Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae. FEBS Lett 308(2):130–132

    Article  CAS  Google Scholar 

  • Ardö Y (2006) Flavour formation by amino acid catabolism. Biotechnol Adv 24:238–242

    Article  Google Scholar 

  • Arevalo-Rodriguez M, Pan X, Boeke JD, Heitman J (2004) FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation. Eukaryot Cell 3(5):1287–1296

    Article  CAS  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (eds) (2003) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bakker BM, Bro C, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182(17):4730–4737

    Article  CAS  Google Scholar 

  • Bakker BM, Overkamp KM, van Maris AJ, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1):15–37

    Article  CAS  Google Scholar 

  • Balasundaram D, Xie QW, Tabor CW, Tabor H (1994) The presence of an active S-adenosylmethionine decarboxylase gene increases the growth defect observed in Saccharomyces cerevisiae mutants unable to synthesize putrescine, spermidine, and spermine. J Bacteriol 176(20):6407–6409

    CAS  Google Scholar 

  • Bareich DC, Nazi I, Wright GD (2003) Simultaneous in vitro assay of the first four enzymes in the fungal aspartate pathway identifies a new class of aspartate kinase inhibitor. Chem Biol 10(10):967–973

    Article  CAS  Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine. S Afr J Enol Vitic 21:27–51

    CAS  Google Scholar 

  • Beltran G, Novo M, Rozes N, Mas A, Guillamon JM (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res 4(6):625–632

    Article  CAS  Google Scholar 

  • Ben-Yosef T, Eden A, Benvenisty N (1998) Characterization of murine BCAT genes: Bcat1, a c-Myc target, and its homolog, Bcat2. Mamm Genome 9(7):595–597

    Article  CAS  Google Scholar 

  • Boulton R, Singleton V, Bisson L, Kunkee R (1995) Principles and practices of winemaking. Chapman Hall, New York

    Google Scholar 

  • Brandriss M (1979) Isolation and preliminary characterization of Saccharomyces cerevisiae proline auxotrophs. J Bacteriol 138(3):816–822

    CAS  Google Scholar 

  • Brown BJ, Deng Z, Karplus PA, Massey V (1998) On the active site of old yellow enzyme. Role of histidine 191 and asparagine 194. J Biol Chem 273(49):32753–32762

    Article  CAS  Google Scholar 

  • Brown BJ, Hyun JW, Duvvuri S, Karplus PA, Massey V (2002) The role of glutamine 114 in old yellow enzyme. J Biol Chem 277(3):2138–2145

    Article  CAS  Google Scholar 

  • Chen EC-H (1977) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. J Am Soc Brew Chem 36(1):39–43

    Google Scholar 

  • Cronwright GR, Rohwer JM, Prior BA (2002) Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 68(9):4448–4456

    Article  CAS  Google Scholar 

  • Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31(1):19–20

    Article  CAS  Google Scholar 

  • de Robichond-Szulmajster H, Surdin Y, Mortimer R (1965) Genetic and biochemical studies on genes controlling the synthesis of threonine and methionine in Saccharomyces. Genetics 53:609–619

    Google Scholar 

  • Delneri D, Gardner DC, Bruschi CV, Oliver SG (1999a) Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast 15(15):1681–1689

    Article  CAS  Google Scholar 

  • Delneri D, Gardner DC, Oliver SG (1999b) Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. Genetics 153(4):1591–1600

    CAS  Google Scholar 

  • Dickinson JR (2000) Pathways of leucine and valine catabolism in yeast. Methods Enzymol 324:80–92

    Article  CAS  Google Scholar 

  • Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Lett 326(1,2,3):29–32

    Article  CAS  Google Scholar 

  • Dickinson JR, Lanterman M, Danner D, Pearson B, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272(43):26871–26878

    Article  CAS  Google Scholar 

  • Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273(40):25751–25756

    Article  CAS  Google Scholar 

  • Dickinson JR, Harrison SJ, Dickinson JA, Hewlins MJ (2000) An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275(15):10937–10942

    Article  CAS  Google Scholar 

  • Dickinson JR, Salgado L, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278(10):8028–8034

    Article  CAS  Google Scholar 

  • Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 4(1):R7

    Article  Google Scholar 

  • Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271(34):20242–20245

    Article  CAS  Google Scholar 

  • Eden A, Van Nedervelde L, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55(3):296–300

    Article  CAS  Google Scholar 

  • Estevez P, Gil M, Falque E (2004) Effects of seven yeast strains on the volatile composition of Palomino wines. Int J Food Sci Technol 39:61–69

    Article  CAS  Google Scholar 

  • Fonzi WA, Sypherd PS (1987) The gene and the primary structure of ornithine decarboxylase from Saccharomyces cerevisiae. J Biol Chem 262(21):10127–10133

    CAS  Google Scholar 

  • Gandre S, Kahana C (2002) Degradation of ornithine decarboxylase in Saccharomyces cerevisiae is ubiquitin independent. Biochem Biophys Res Commun 293(1):139–144

    Article  CAS  Google Scholar 

  • Grauslund M, Didion T, Kielland-Brandt MC, Andersen HA (1995) BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. Biochim Biophys Acta 1269(3):275–280

    Article  Google Scholar 

  • Haarer BK, Amberg DC (2004) Old yellow enzyme protects the actin cytoskeleton from oxidative stress. Mol Biol Cell 15(10):4522–4531

    Article  CAS  Google Scholar 

  • Hazelwood L, Daran JM, Van Maris AJ, Pronk JT, Dickinson JA (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  Google Scholar 

  • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385(2):201–219

    Article  CAS  Google Scholar 

  • Hoyt MA, Zhang M, Coffino P (2003) Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 278(14):12135–12143

    Article  CAS  Google Scholar 

  • Jansen M, Veurink JH, Euverink GJ, Dijkhuizen L (2003) Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids. FEMS Yeast Res 3(3):313–318

    CAS  Google Scholar 

  • Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271(40):24458–24464

    Article  CAS  Google Scholar 

  • Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  • Larsson C, Pahlman IL, Ansell R, Rigoulet M, Adler L, Gustafsson L (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14(4):347–357

    Article  CAS  Google Scholar 

  • Larsson S, Nilvebrant NO, Jonsson LJ (2001) Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol 57(1–2):167–174

    CAS  Google Scholar 

  • Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66(2):744–753

    Article  CAS  Google Scholar 

  • Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS (2006) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6(5):726–743

    Article  CAS  Google Scholar 

  • Majdak A, Herjavec S, Orlic S, Redzepovic S, Mirosevic N (2002) Comparison of wine aroma compounds produced by Saccharomyces paradoxus and Saccharomyces cerevisiae strains. Food Technol Biotechnol 40(2):103–109

    CAS  Google Scholar 

  • Mateo J, Jimenez M, Pastor A, Huerta T (1998) Influence of the inoculation time of high sugar content must on the formation of wine aroma. World J Microbiol Biotechnol 14:357–363

    Article  CAS  Google Scholar 

  • Matthews R, Massey V (1968) Isolation of old yellow enzyme in free and complexed forms. J Biol Chem 244(7):1779–1786

    Google Scholar 

  • McNemar MD, Gorman JA, Buckley HR (1997) Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a spe1 delta strain of Saccharomyces cerevisiae. Yeast 13(14):1383–1389

    Article  CAS  Google Scholar 

  • Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 276(2):147–161

    Article  CAS  Google Scholar 

  • Niino YS, Chakraborty S, Brown BJ, Massey V (1995) A new old yellow enzyme of Saccharomyces cerevisiae. J Biol Chem 270(5):1983–1991

    Article  CAS  Google Scholar 

  • Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992) A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae. J Bacteriol 174(14):4701–4706

    CAS  Google Scholar 

  • Pahlman IL, Gustafsson L, Rigoulet M, Larsson C (2001) Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Yeast 18(7):611–620

    Article  CAS  Google Scholar 

  • Pahlman IL, Larsson C, Averet N, Bunoust O, Boubekeur S, Gustafsson L, Rigoulet M (2002) Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae. J Biol Chem 277(31):27991–27995

    Article  CAS  Google Scholar 

  • Prohl C, Kispal G, Lill R (2000) Branched-chain-amino-acid transaminases of yeast Saccharomyces cerevisiae. Methods Enzymol 324:365–375

    Article  CAS  Google Scholar 

  • Quain D (1988) Studies on yeast physiology—impact of fermentation performance and product quality. J Inst Brew 94:315–323

    CAS  Google Scholar 

  • Reiser J, Muheim A, Hardegger M, Frank G, Fiechter A (1994) Aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Gene cloning, sequence analysis, expression, and purification of the recombinant enzyme. J Biol Chem 269(45):28152–28159

    CAS  Google Scholar 

  • Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86(1–2):169–180

    Article  CAS  Google Scholar 

  • Rossouw D, Naes T, Bauer FF (2008) Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics 9:530

    Article  Google Scholar 

  • Saito K, Thiele DJ, Davio M, Lockridge O, Massey V (1991) The cloning and expression of a gene encoding Old Yellow Enzyme from Saccharomyces carlsbergensis. J Biol Chem 266(31):20720–20724

    CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smit A, Cordero Otero RR, Lambrechts MG, Pretorius IS, Van Rensburg P (2003) Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae. J Agric Food Chem 51(17):4909–4915

    Article  CAS  Google Scholar 

  • Stott K, Saito K, Thiele DJ, Massey V (1993) Old Yellow Enzyme. The discovery of multiple isozymes and a family of related proteins. J Biol Chem 268(9):6097–6106

    CAS  Google Scholar 

  • Ter Schure EG, Flikweert MT, Van Dijken JP, Pronk JT, Verrips CT (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64(4):1303–1307

    Google Scholar 

  • Thierry A, Maillard M-B (2002) Production of cheese flavour compounds derived from amino acid catabolism by Propionibacterium freudenreichii. Lait 82:17–32

    Article  Google Scholar 

  • Thierry A, Maillard M-B, Yvon M (2002) Conversion of L-leucine to isovaleric acid by Propionibacterium freudenreichii TL 34 and ITGP23. Appl Environ Microbiol 68(2):608–615

    Article  CAS  Google Scholar 

  • Tomenchok D, Brandriss M (1987) Gene-enzyme relationships in the proline biosynthesis pathway of Saccharomyces cerevisiae. J Bacteriol 169(12):5364–5372

    CAS  Google Scholar 

  • Toth C, Coffino P (1999) Regulated degradation of yeast ornithine decarboxylase. J Biol Chem 274(36):25921–25926

    Article  CAS  Google Scholar 

  • Trelea I, Titica M, Corrieu G (2004) Dynamic optimisation of the aroma production in brewing fermentation. J Process Control 14:1–14

    Article  CAS  Google Scholar 

  • Trotter EW, Collinson EJ, Dawes IW, Grant CM (2006) Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 72(7):4885–4892

    Article  CAS  Google Scholar 

  • Van Dijken JP, Scheffers W (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    Google Scholar 

  • Vanderhaegen B, Neven H, Coghe S, Verstrepen K, Verachtert H, Derdelinckx G (2003) Evolution of chemical and sensory properties during aging of top-fermented beer. J Agric Food Chem 51:6782–6790

    Article  CAS  Google Scholar 

  • Vidrih R, Hribar J (1999) Synthesis of higher alcohols during cider processing. Food Chem 67:287–294

    Article  CAS  Google Scholar 

  • Volbrecht D, Radler F (1973) Formation of higher alcohols by amino acid deficient mutants of Saccharomyces cerevisiae. I. The decomposition of amino acids to higher alcohols. Arch Mikrobiol 94:351–358

    Article  Google Scholar 

  • Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69(8):4534–4541

    Article  CAS  Google Scholar 

  • Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71(6):3276–3284

    Article  CAS  Google Scholar 

  • Yoshimoto H, Fukushige T, Yonezawa T, Sakai Y, Okawa K, Iwamatsu A, Sone H, Tamai Y (2001) Pyruvate decarboxylase encoded by the PDC1 gene contributes, at least partially, to the decarboxylation of alpha-ketoisocaproate for isoamyl alcohol formation in Saccharomyces cerevisiae. J Biosci Bioeng 92(1):83–85

    Article  CAS  Google Scholar 

  • Young ET, Pilgrim D (1985) Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol 5(11):3024–3034

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian F. Bauer.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. A1

Fermentation kinetics of the deletion strains. Strains were inoculated and cultivated as stated in the “Materials and methods” section, and samples were taken every 6 h for the first 24 h and thereafter less regularly. Fifty microliters of the medium was added to 200 μl H2O in a 96-well plate, mixed by pipetting, and read at 600 nm in a Powerwave X spectrophotometer (Bio-Tek Instruments, Inc.). a Growth throughout fermentation. The data indicate that there are no statistical differences in the fermentation rate and biomass production between the various deletion strains and the wild type. b Growth during the first 48 h. No significant differences between the strains were observed during the crucial first 48-h growth period. The data suggest that the effects of the deletions on the production of higher alcohols and related compounds are due to the specific gene deletion in the strain and not the consequence of some indirect effects of the mutations on growth or fermentation performance (JPEG 2 kb)

High resolution image (TIFF 3784 kb)

Table A1

Results of t test of all strains that were screened initially (TXT 17 kb)

ESM 1

(DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Styger, G., Jacobson, D. & Bauer, F.F. Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 91, 713–730 (2011). https://doi.org/10.1007/s00253-011-3237-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3237-z

Keywords

Navigation