Skip to main content
Log in

Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Effective utilisation of cellulosic biomasses for economical lactic acid production requires a microorganism with potential ability to utilise efficiently its major components, glucose and cellobiose. Amongst 631 strains isolated from different environmental samples, strain QU 25 produced high yields of l-(+)-lactic acid of high optical purity from cellobiose. The QU 25 strain was identified as Enterococcus mundtii based on its sugar fermentation pattern and 16S rDNA sequence. The production of lactate by fermentation was optimised for the E. mundtii QU25 strain. The optimal pH and temperature for batch culturing were found to be 7.0°C and 43°C, respectively. E. mundtii QU 25 was able to metabolise a mixture of glucose and cellobiose simultaneously without apparent carbon catabolite repression. Moreover, under the optimised culture conditions, production of optically pure l-lactic acid (99.9%) increased with increasing cellobiose concentrations. This indicates that E. mundtii QU 25 is a potential candidate for effective lactic acid production from cellulosic hydrolysate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe S, Takagi M (1991) Simultaneous saccharification and fermentation of cellulose to lactic acid. Biotechnol Bioeng 37:93–96

    Article  CAS  Google Scholar 

  • Adnan AFM, Tan IKP (2007) Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential. Bioresour Technol 98:1380–1985

    Article  Google Scholar 

  • Adsul M, Khire J, Bastawde K, Gokhale D (2007) Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Appl Environ Microbiol 73:5055–5057

    Article  CAS  Google Scholar 

  • Anuradha R, Suresh AK, Venkatesh KV (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem 35:367–375

    Article  CAS  Google Scholar 

  • Benthin S, Villadsen J (1995) Production of optically pure d-lactate by Lactobacillus bulgaricus and purification by crystallisation and liquid/liquid extraction. Appl Microbiol Biotechnol 42:826–829

    Article  CAS  Google Scholar 

  • Bustos G, Moldes AB, Cruz JM, Dominguez JM (2005) Production of lactic acid from vine-trimming wastes and viticulture lees using a simultaneous saccharification fermentation method. J Sci Food Agric 85:466–472

    Article  CAS  Google Scholar 

  • Caminal G, Lbpez-Santin J, Sola C (1985) Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose. Biotechnol Bioeng 27:1282–1290

    Article  CAS  Google Scholar 

  • Collins MD, Farrow JAE, Jones D (1986) Enterococcus mundtii sp. nov. Int J Syst Bacteriol 36:8–12

    Article  CAS  Google Scholar 

  • Ding SF, Tan TW (2006) l-Lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem 41:1451–1454

    Article  CAS  Google Scholar 

  • Eberhart BM (1961) Exogenous enzymes of Neurospora conidia and mycelia. J Cell Comp Physiol 58:11–16

    Article  CAS  Google Scholar 

  • Fujii M, Mori J, Homma T, Taniguchi M (1995) Synergy between an endoglucanase and cellobiohydrolases from Trichoderma koningii. Chem Eng J 59:315–319

    CAS  Google Scholar 

  • Ghosh TK, Das K (1971) Kinetics of hydrolysis of insoluble cellulose by cellulase. Adv Biochem Eng 1:49–55

    Google Scholar 

  • Gusakov AV, Sinitsyn AP (1992) A theoretical analysis of cellulase product inhibition: effect of cellulase binding constant, enzyme/substrate ratio, and beta-glucosidase activity on the inhibition pattern. Biotechnol Bioeng 40:663–672

    Article  CAS  Google Scholar 

  • Hofvendahl K, Hahn-Hägerdal B (1997) l-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme Microb Technol 20:301–307

    Article  CAS  Google Scholar 

  • Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107

    Article  CAS  Google Scholar 

  • Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36:275–287

    Article  CAS  Google Scholar 

  • Hujanen M, Linko YY (1996) Effect of temperature and various nitrogen sources on l-(+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol 45:307–313

    Article  CAS  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2006) Simultaneous saccharification and fermentation of cassava bagasse for l-(+)-lactic acid production using Lactobacilli. Appl Biochem Biotechnol 134:263–272

    Article  CAS  Google Scholar 

  • Joshi DS, Singhvi MS MS, Khire JM, Gokhale DV (2010) Strain improvement of Lactobacillus lactis for d-lactic acid production. Biotechnol Lett 32:1573–6776

    Article  Google Scholar 

  • Junco MTT, Martin MG, Toledo MLP, Gomez PL, Barrasa JLM (2001) Identification and antibiotic resistance of fecal enterococci isolated from water samples. Int J Hyg Environ Health 203:363–368

    Article  CAS  Google Scholar 

  • Kim J-H, Shoemaker SP, Mills DA (2009) Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155:1351–1359

    Article  CAS  Google Scholar 

  • Kim J-H, Block DE, Shoemaker SP, Mills DA (2010) Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Appl Microbiol Biotechnol 86:1375–1385

    Article  CAS  Google Scholar 

  • Kruus K, Andreacchi A, Wang WK, Wu JH (1995) Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol 44:399–404

    Article  CAS  Google Scholar 

  • Lee YH, Fan LT (1983) Kinetic studies of enzymatic hydrolysis insoluble cellulose (II). Biotechnol Bioeng 25:959–966

    Google Scholar 

  • Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  • Manero A, Blanch AR (1999) Identification of Enterococcus spp. with a biochemical key. Appl Environ Microbiol 65:5173–5176

    Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59:621–634

    Article  CAS  Google Scholar 

  • Moldes AB, Alonso JL, Parajo JC (2001) Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. J Chem Technol Biotechnol 76:279–284

    Article  CAS  Google Scholar 

  • Nidetzky B, Steiner S, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 29:705–710

    Google Scholar 

  • Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) d-lactic acid production from cellooligosaccharides and β-glucan using l-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85:643–650

    Article  CAS  Google Scholar 

  • Persson I, Tjerneld F, Hahn-Hägerdahl B (1991) Fungal cellulolytic enzyme production: a review. Process Biochem 26:65–74

    Article  CAS  Google Scholar 

  • Ramos LP, Saddler JN (1994) Enzyme recycling during fed-batch hydrolysis of cellulose derived from steam-exploded Eucalyptus vitaminalis. Appl Biochem Biotechnol 45:193–207

    Article  Google Scholar 

  • Romero-Garcia S, Hernández-Bustos C, Merino E, Gosset G, Martinez A (2009) Homolactic fermentation from glucose and cellobiose using Bacillus subtilis. Microb Cell Fact 8–23. doi:10.1186/1475-2859-8-23. http://www.microbialcellfactories.com/content/8/1/23

  • Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71:2789–2792

    Article  CAS  Google Scholar 

  • Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, Sonomoto K (2009) Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol 75:1552–1558

    Article  CAS  Google Scholar 

  • Severson DK, Barrett CL (1995) Lactobacillus delbrueckii ssp. bulgaricus strain and fermentation process for producing l-(+)-lactic acid. US Patent 5,416,020

  • Shen X, Xia L (2004) Production and immobilization of cellobiase from Aspergillus niger ZU-07. Process Biochem 39:1363–1367

    Article  CAS  Google Scholar 

  • Shibata K, Flores DM, Kobayashi G, Sonomoto K (2007) Direct l-lactic acid fermentation with sago starch by a newly-isolated lactic acid bacterium, Enterococcus facieum. Enzyme Microb Technol 41:149–155

    Article  CAS  Google Scholar 

  • Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) d-(–)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem 12:1106–1109

    Article  CAS  Google Scholar 

  • Stockton BC, Mitchell DJ, Grohmann K (1991) Optimum β-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnol Lett 13:57–62

    Article  CAS  Google Scholar 

  • Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97:211–217

    Article  CAS  Google Scholar 

  • Tokuhiro K, Ishida N, Kondo A, Takahashi H (2008) Lactic fermentation of cellobiose by a yeast strain displaying β-glucosidase on the cell surface. Appl Microbiol Biotechnol 79:481–488

    Article  CAS  Google Scholar 

  • Tolan JS, Foody B (1999) Cellulases from submerged fermentation. Adv Biochem Eng Biotechnol 65:41–67

    CAS  Google Scholar 

  • Tsai SP, Coleman RD, Moon SH, Schneider KA, Millard CS (1993) Strain screening and development for lactic acid fermentation. Appl Biochem Biotechnol 39(40):323–335

    Article  Google Scholar 

  • Venkatesh KV (1997) Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresour Technol 62:91–98

    Article  CAS  Google Scholar 

  • Wee YJ, Yun JS, Park DH, Ryu HW (2005) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid. Biotechnol Bioprocess Eng 10:23–28

    Article  CAS  Google Scholar 

  • Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  • Xia L, Shen X (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91:259–262

    Article  CAS  Google Scholar 

  • Yáñez R, Moldes AB, Alonso JL, Parajó JC (2003) Production of d-(–)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 25:1161–1164

    Article  Google Scholar 

  • Yoon HH (1997) Simultaneous saccharification and fermentation of cellulose for lactic acid production. Biotechnol Bioprocess Eng 2:101–104

    Article  Google Scholar 

  • Yun JS, Wee YJ, Kim JN, Ryu HW (2004) Fermentative production of dl-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium Lactobacillus sp. Biotechnol Lett 26:1613–1616

    Article  CAS  Google Scholar 

  • Zendo T, Eungruttanagorn N, Fujioka S, Tashiro Y, Nomura K, Sera Y, Kobayashi G, Nakayama J, Ishizaki A, Sonomoto K (2005) Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. J Appl Microbiol 99:1181–1190

    Article  CAS  Google Scholar 

  • Zhang B, He PJ, Ye NF, Shao LM (2008) Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes. Bioresour Technol 99:855–862

    Article  CAS  Google Scholar 

Download references

Acknowledgment

M.A. Abdel-Rahman is supported by an Egyptian government scholarship offered by the Ministry of Higher Education and Scientific Research, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sonomoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Rahman, M.A., Tashiro, Y., Zendo, T. et al. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol 89, 1039–1049 (2011). https://doi.org/10.1007/s00253-010-2986-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2986-4

Keywords

Navigation