Skip to main content
Log in

Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A thermostable β-glucosidase (BGLI) was purified from Thermoascus aurantiacus IFO9748, and the gene (bgl1) encoding this enzyme was cloned and expressed in yeast Pichia pastoris. The deduced amino acid sequence encoded by bgl1 showed high similarity with the sequence of glycoside hydrolase family 3. The recombinant enzyme was purified and subjected to enzymatic characterization. Recombinant BGLI retained more than 70% of its initial activity after 1 h of incubation at 60°C and was stable in the pH range 3–8. The optimal temperature for enzyme activity was about 70°C and the optimal pH was about 5. P. pastoris expressing recombinant BGLI became able to utilize cellobiose as a carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Ashadi RW, Shimokawa K, Ogawa K (1996) The mechanism of enzymatic cellulose degradation. 2. Mode of action of cellulose hydrolyzing enzyme from Aspergillus niger UC. J Gen Appl Microbiol 42:103–108

    Article  CAS  Google Scholar 

  • Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    Article  CAS  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cai YJ, Buswell JA, Chang ST (1998) β-Glucosidase components of the cellulolytic system of the edible straw mushroom, Volvariella volvacea. Enzyme Microb Technol 22:122–129

    Article  CAS  Google Scholar 

  • Coughlan MP (1991) Mechanisms of cellulose degradation by fungi and bacteria. Anim Feed Sci Technol 32:77–100

    Article  CAS  Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407–415

    Article  CAS  Google Scholar 

  • Dan S, Marton I, Dekel M, Bravdo BA, He S, Withers SG, Shoseyov O (2000) Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. J Biol Chem 275:4973–4980

    Article  CAS  Google Scholar 

  • Decker CH, Visser J, Schreier P (2001) β-Glucosidase multiplicity from Aspergillus tubingensis CBS 643.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl Microbiol Biotechnol 55:157–163

    Article  CAS  Google Scholar 

  • Ducret A, Trani M, Lortie R (2002) Screening of various glycosidases for the synthesis of octyl glucoside. Biotechnol Bioeng 77:752–757

    Article  CAS  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  Google Scholar 

  • Gomes I, Gomes J, Gomes DJ, Steiner W (2000) Simultaneous production of high activities of thermostable endoglucanase and β-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53:461–468

    Article  CAS  Google Scholar 

  • Gonzalez-Candelas L, Gil JV, Lamuela-Raventos RM, Ramon D (2000) The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine. Int J Food Microbiol 59:179–183

    Article  CAS  Google Scholar 

  • Gunata Z, Vallier MJ (1999) Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnol Lett 21:219–223

    Article  CAS  Google Scholar 

  • Harvey AJ, Hrmova M, De Gori R, Varghese JN, Fincher GB (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 41:257–269

    Article  CAS  Google Scholar 

  • Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (1989) Cellulase families revealed by hydrophobic cluster-analysis. Gene 81:83–95

    Article  CAS  Google Scholar 

  • Hong J, Tamaki H, Yamamoto K, Kumagai H (2003a) Cloning of a gene encoding a thermo-stable endo-β-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol Lett 25:657–661

    Article  CAS  Google Scholar 

  • Hong J, Tamaki H, Yamamoto K, Kumagai H (2003b) Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl Microbiol Biotechnol 63:42–50

    Article  CAS  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2006) Unusual hydrophobic linker region of β-glucosidase (BGLII) from Thermoascus aurantiacus is required for hyper-activation by organic solvents. Appl Microbiol Biotechnol DOI https://doi.org/10.1007/s00253-006-0428-0

    Article  CAS  Google Scholar 

  • Huang L, Forsberg CW (1988) Purification and comparison of the periplasmic and extracellular forms of the cellodextrinase from Bacteroides succinogenes. Appl Environ Microbiol 54:1488–1493

    Article  CAS  Google Scholar 

  • Iwashita K, Todoroki K, Kimura H, Shimoi H, Ito K (1998) Purification and characterization of extracellular and cell wall bound β-glucosidases from Aspergillus kawachii. Biosci Biotechnol Biochem 62:1938–1946

    Article  CAS  Google Scholar 

  • Iwashita K, Nagahara T, Kimura H, Takano M, Shimoi H, Ito K (1999) The bglA gene of Aspergillus kawachii encodes both extracellular and cell wall-bound β-glucosidases. Appl Environ Microbiol 65:5546–5553

    Article  CAS  Google Scholar 

  • Kawai R, Yoshida M, Tani T, Igarashi K, Ohira T, Nagasawa H, Samejima M (2003) Production and characterization of recombinant Phanerochaete chrysosporium β-glucosidase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem 67:1–7

    Article  CAS  Google Scholar 

  • Kawamori M, Takayama K, Takasawa S (1987) Production of ethanol from biomasses .6. production of cellulases by a thermophilic fungus, Thermoascus aurantiacus a-131. Agric Biol Chem 51:647–654

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  Google Scholar 

  • Millqvist-Fureby A, Gao C, Vulfson EN (1998) Regioselective synthesis of ethoxylated glycoside esters using β-glucosidase in supersaturated solutions and lipases in organic solvents. Biotechnol Bioeng 59:747–753

    Article  CAS  Google Scholar 

  • Murray P, Aro N, Collins C, Grassick A, Penttila M, Saloheimo M, Tuohy M (2004) Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif 38:248–257

    Article  CAS  Google Scholar 

  • Ortner J, Albert M, Terler K, Steiner W, Dax K (2000) Transglycosylation reactions with a crude culture filtrate from Thermoascus aurantiacus. Carbohydr Res 327:483–487

    Article  CAS  Google Scholar 

  • Ozaki H, Yamada K (1991) Isolation of Streptomyces sp. producing glucose-tolerant β-glucosidases and properties of the enzymes. Agric Biol Chem 55:979–987

    CAS  Google Scholar 

  • Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J Bhat MK (2001) Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–127

    Article  CAS  Google Scholar 

  • Perezpons JA, Rebordosa X, Querol E (1995) Properties of a novel glucose-enhanced β-glucosidase purified from Streptomyces sp. (Atcc-11238). Biochim Biophys Acta 1251:145–153

    Article  Google Scholar 

  • Saloheimo A, Aro N, Ilmen M, Penttila M (2000) Isolation of the ace1 gene encoding a Cys(2)–His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem 275:5817–5825

    Article  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  Google Scholar 

  • Sarney DB, Vulfson EN (1995) Application of enzymes to the synthesis of surfactants. Trends Biotechnol 13:164–172

    Article  CAS  Google Scholar 

  • Steenbakkers PJM, Harhangi HR, Bosscher MW, van der Hooft MMC, Keltjens JT, van der Drift C, Vogels GD, Den Camp HJMO (2003) β-glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem J 370:963–970

    Article  CAS  Google Scholar 

  • Takada G, Kawaguchi T, Sumitani J, Arai M (1998) Expression of Aspergillus aculeatus no. F-50 cellobiohydrolase I (cbhI) and β-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 62:1615–1618

    Article  CAS  Google Scholar 

  • Turan Y, Zheng M (2005) Purification and characterization of an intracellular beta-glucosidase from the methylotrophic yeast Pichia pastoris. Biochemistry (Mosc) 70:1363–1368

    Article  CAS  Google Scholar 

  • Zhao X, Qu Y, Gao P (1993) Acceleration of ethanol-production from paper-mill waste fiber by supplementation with β-glucosidase. Enzyme Microb Technol 15:62–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid for scientific research from the Ministry of Education, Science, Sports and Culture of Japan; the New Energy and Industrial Technology Development Organization; Japan Society for the Promotion of Science; and the Research Institute of Innovative Technology for the Earth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisanori Tamaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J., Tamaki, H. & Kumagai, H. Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus . Appl Microbiol Biotechnol 73, 1331–1339 (2007). https://doi.org/10.1007/s00253-006-0618-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0618-9

Keywords

Navigation