Skip to main content
Log in

Gene cloning and molecular characterization of a β-glucosidase from Thermotoga naphthophila RUK-10: an effective tool for synthesis of galacto-oligosaccharide and alkyl galactopyranosides

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A novel thermostable β-glucosidase(Tnap0602) with β-galactosidase activity was cloned from Thermotoga naphthophila RUK-10 and overexpressed in Escherichia coli BL21(DE3) with the aid of pET28b(+) vector. The recombinant β-glucosidase was purified to homogeneity by heat precipitation and Ni2+-affinity chromatography. The molecular weight of the recombinant enzyme was estimated to be 51 kDa by SDS-PAGE analysis. The optimum temperature for the hydrolyses of p-nitrophenyl-β-D-glucopyranoside and o-nitrophenyl-β-D-galactopyranoside by the recombinant β-glucosidase were both above 95 °C, and the corresponding optimum pH value was found to be the same as 7.0. Thermostability studies show that the half-lives of the recombinant enzyme at 75, 80, 85 and 90 °C are respectively 84, 32, 14, and 3 h, and it is quite stable in a pH range of 5.0–10.0. The K m and V max values of the recombinant β-glucosidase for the hydrolysis of pNPGlu at 80 °C are 0.127 mmol/L and 18389.1 μmol·min−1·mg−1, the corresponding values are 0.625 mmol/L and 6250 μmol·min−1·mg−1 for the hydrolysis of oNPGal, respectively. The enzyme also display the hydrolysis activity for lactose and cellobiose. Galacto-oligosaccharide and alkyl galactopyranosides could be synthesized from Tnap0602 when lactose was used as the transglycosylation substrate, indicating that the thermostable β-glucosidase could be a candidate for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatia Y., Mishra S., Bisaria V. S., Crit. Rev. Biotechnol., 2002, 22, 375

    Article  CAS  Google Scholar 

  2. Harnpicharnchai P., Champreda V., Sornlake W., Eurwilaichitr L., Protein Expr. Purif., 2009, 67, 61

    Article  CAS  Google Scholar 

  3. Turner P., Svensson D., Adlercreutz P., Karlsson E. N., J. Biotechnol., 2007, 130, 67

    Article  CAS  Google Scholar 

  4. Krisch J., Bencsik O., Papp T., Vágvölgyi C., Takó M., Bioresour. Technol., 2012, 114, 555

    Article  CAS  Google Scholar 

  5. Sivakumar R., Divakar S., Enzyme Microb. Technol., 2009, 44, 33

    Article  CAS  Google Scholar 

  6. Mahoney R. R., Food Chem., 1998, 63, 147

    Article  CAS  Google Scholar 

  7. Urrutia P., Rodriguez-Colinas B., Fernandez-Arrojo L., Ballesteros A. O., Wilson L., Illanes A., Plou F. J., J. Agric. Food Chem., 2013, 61, 1081

    Article  CAS  Google Scholar 

  8. Macfarlane G. T., Steed H., MacFarlane S., J. Appl. Microbiol., 2008, 104, 305

    CAS  Google Scholar 

  9. El-Sukkary M. M. A., Nagla A. S., Aiad I., El-Azab W. I. M., J. Surfact Deterg., 2008, 11, 129

    Article  CAS  Google Scholar 

  10. Andersson M., Adlercreutz P., Patrick A., Journal of Molecular Catalysis B: Enzymatic, 2001, 14, 69

    Article  CAS  Google Scholar 

  11. Daabrowski S., Sobiewska G., Maciunska J., Synowiecki J., Ku J., Protein Expression and Purification, 2000, 19, 107

    Article  CAS  Google Scholar 

  12. Kang S. K., Cho K. K., Ahn J. K., Bok J. D., Kang S. H., Woo J. H., Lee H. G., You S. K., Choi Y. J., J. Biotechnol., 2005, 116, 337

    Article  Google Scholar 

  13. Hong M. R., Kim Y. S., Park C. S., Lee J. K., Kim Y. S., Oh D. K., J. Biosci. Bioeng., 2009, 108, 36

    Article  CAS  Google Scholar 

  14. Nakkharat P., Haltrich D., J. Biotechnol., 2006, 123, 304

    Article  CAS  Google Scholar 

  15. Kengen S. W. M., Luesink E. J., Stams A. J. M., Zehnder A. J. B., Eur. J. Biochem., 1993, 213, 305

    Article  CAS  Google Scholar 

  16. Gabelsberger J., Liebl W., Schleifer K. H., Appl. Microbiol. Biotechnol., 1993, 40, 44

    Article  CAS  Google Scholar 

  17. Kim Y. S., Park C. S., Oh D. K., Enzyme Microb. Technol., 2006, 39, 903

    Article  CAS  Google Scholar 

  18. Onishi N., Tanaka T., Appl. Environ. Microbiol., 1995, 61, 4026

    CAS  Google Scholar 

  19. Dabrowski S., Maciunska J., Synowiecki J., Mol. Biotechnol., 1998, 10, 217

    Article  CAS  Google Scholar 

  20. Juajun O., Nguyen T. H., Maischberger T., Iqbal S., Haltrich D., Yamabhai M., Appl. Microbiol. Biotechnol., 2011, 89, 645

    Article  CAS  Google Scholar 

  21. Iqbal S., Nguyen T. H., Nguyen H. A., Nguyen T. T., Maischberger T., Kittl R., Haltrich D., J. Agric. Food Chem., 2011, 59, 3083

    Article  Google Scholar 

  22. Splechtna B., Nguyen T. H., Steinböck M., Kulbe K. D., Lorenz W., Haltrich D., J. Agric. Food Chem., 2006, 54, 4999

    Article  CAS  Google Scholar 

  23. Kobayashi T., Adachi S., Nakanishi K., Matsuno R., Journal of Molecular Catalysis B: Enzymatic, 2000, 11, 13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqiu Xie.

Additional information

Supported by the National High Technology Research and Development Program of China(No.2013AA102104) and the National Natural Science Foundation of China(Nos.20772046, 21072075).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Yang, J., Zhen, Z. et al. Gene cloning and molecular characterization of a β-glucosidase from Thermotoga naphthophila RUK-10: an effective tool for synthesis of galacto-oligosaccharide and alkyl galactopyranosides. Chem. Res. Chin. Univ. 31, 774–780 (2015). https://doi.org/10.1007/s40242-015-5179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5179-y

Keywords

Navigation