Skip to main content
Log in

Effect of silica nanoparticles with different sizes on the catalytic activity of glucose oxidase

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work we present a strategy for the covalent immobilization of periodate oxidized glucose oxidase (\( {\text{IO}}^{ - }_{4} {\text{ - GOx}} \)) to aminated silica nanoparticles (ASNPs) modified on gold electrodes. Silica nanoparticles greatly enhanced the catalytic ability of GOx toward the oxidation of glucose and improved the electron transfer between the GOx and the electrode surface. ASNPs of varying size—that is 100, 80, 60, and 30 nm—were prepared, and they were used to fabricate biosensors. Electrochemical impedance spectroscopy (EIS) of ferrocyanide followed the assembly process and verified the successful immobilization of \( {\text{IO}}^{ - }_{4} {\text{ - GOx}} \) on ASNPs modified on gold electrodes. From the analysis of catalytic signals of biosensors using different sizes of ASNPs under the same conditions, the surface concentration of electrically wired enzyme (Γ ET) was estimated and was found to increase with decreasing ASNPs size. Therefore, the sensitivity of biosensors using smaller ASNPs was higher than that using larger particles. Specifically, we utilized the ASNPs with optimal size (30 nm) to fabricate the glucose biosensor. The resulting electrodes showed a wide linear response to glucose at least to 6 mM and reached 95% of the steady-state current in less than 4 s with a sensitivity of 5.02 μA mM−1 cm−2 and a detection limit of 0.01 mM. The biosensor also showed excellent stability and good reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nalwa HS (1999) Handbook of nanostructured materials and nanotechnology. Academic, San Diego

    Google Scholar 

  2. Li CZ, Liu YL, Luong JHT (2005) Anal Chem 77:478

    Article  CAS  Google Scholar 

  3. Jia J, Wang B, Wu A, Cheng G, Li Z, Dong SJ (2002) Anal Chem 74:2217

    Article  CAS  Google Scholar 

  4. Qhobosheane M, Santra S, Zhang P, Tan W (2001) Analyst 126:1274

    Article  CAS  Google Scholar 

  5. Gan X, Liu T, Zhong J, Liu XJ, Li GX (2004) Chembiochem 5:1686

    Article  CAS  Google Scholar 

  6. Hilliard LR, Zhao X, Tan W (2002) Anal Chim Acta 470:51

    Article  CAS  Google Scholar 

  7. He P, Hu NF (2004) Electroanalysis 16:1122

    Article  CAS  Google Scholar 

  8. He P, Hu NF, Rusling JF (2004) Langmuir 20:722

    Article  CAS  Google Scholar 

  9. Lei C, Wollenberger U, Bistolas N (2002) Anal Bioanal Chem 372:235

    Article  CAS  Google Scholar 

  10. Zhang Y, He P, Hu NF (2004) Electrochimica Acta 49:1981

    Article  CAS  Google Scholar 

  11. Sclafani A, Palmisano L, Schiavello M (1990) J Phys Chem 94:829

    Article  CAS  Google Scholar 

  12. Xiao Y, Ju HX, Chen HY (1999) Anal Chim Acta 391:73

    Article  CAS  Google Scholar 

  13. Zhang D, Chen Y, Chen HY, Xia XH (2004) Anal Bioanal Chem 379:1025

    Article  CAS  Google Scholar 

  14. Luo X, Xu J, Zhao W, Chen HY (2004) Sens Actuators B Chem 97:249

    Article  Google Scholar 

  15. Zhang FF, Wan Q, Li CX, Wang XL, Zhu ZQ, Xian YZ, Jin LT, Yamamoto K (2005) J Electroanal Chem 575:1

    Article  CAS  Google Scholar 

  16. Willner I, Katz E (2000) Angew Chem, Int Ed 39:1180

    Article  Google Scholar 

  17. Stöber W, Fink A (1968) J Colloid Interface Sci 26:62

    Article  Google Scholar 

  18. Philipse AP (1988) Colloid Polym Sci 266:1174

    Article  CAS  Google Scholar 

  19. Blaaderen AV, Geest JV, Vrij A (1992) J Colloid Interface Sci 154:481

    Article  Google Scholar 

  20. Blaaderen AV, Vrij A (1993) J Colloid Interface Sci 156:1

    Article  Google Scholar 

  21. Badley RD, Ford WT, McEnroe FJ (1990) Langmuir 6:792

    Article  CAS  Google Scholar 

  22. Graf C, Blaaderen AV (2002) Langmuir 18:524

    Article  CAS  Google Scholar 

  23. Zaborsky OR, Ogletree J (1974) Biochem Biophys Res Commun 61:210

    Article  CAS  Google Scholar 

  24. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  25. Stoynov ZB, Grafov BM, Savova-Sataynov BS, Elkin VV (1991) Electrochemical impedance. Nauka Publisher, Moscow

    Google Scholar 

  26. Zhuo Y, Yuan R, Chai YC, Tang DP, Zhang Y, Wang N, Li XL, Zhu Q (2005) Electrochem Commun 7:355

    Article  CAS  Google Scholar 

  27. Blin JL, Gerardin C, Carteret C, Rodehuser L, Selve C, Stebe MJ (2005) Chem Mater 17:1479

    Article  CAS  Google Scholar 

  28. Bourdillon C, Demaille C, Gueris J, Moiroux J, Savéant J (1993) J Am Chem Soc 115:12264

    Article  CAS  Google Scholar 

  29. Anicet N, Bourdillon NC, Moiroux J, Saveant JM (1998) J Phys Chem B 102:9844

    Article  CAS  Google Scholar 

  30. Habermuller K, Mosbach M, Schuhmann W (2000) Fresenius J Anal Chem 366:560

    Article  CAS  Google Scholar 

  31. Doron A, Katz E, Willner I (1995) Langmuir 11:1313

    Article  CAS  Google Scholar 

  32. Kamin RA, Wilson GS (1980) Anal Chem 52:1198

    Article  CAS  Google Scholar 

  33. Murthy ASN, Sharma J (1998) Anal Chim Acta 363:215

    Article  CAS  Google Scholar 

  34. Chara TJ, Rajagopalan R, Heller A (1994) Anal Chem 66:2451

    Article  Google Scholar 

  35. Garjonyte R, Malinauskas A (2000) Biosens Bioelectron 15:445

    Article  CAS  Google Scholar 

  36. Wang J, Pamidi PVA (1998) Anal Chem 70:1171

    Article  CAS  Google Scholar 

  37. Chen Q, Kenausis GL, Heller A (1998) J Am Chem Soc 120:4582

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 615kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Yan, F., Yang, W. et al. Effect of silica nanoparticles with different sizes on the catalytic activity of glucose oxidase. Anal Bioanal Chem 387, 1565–1572 (2007). https://doi.org/10.1007/s00216-006-1013-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1013-1

Keywords

Navigation