Skip to main content
Log in

Immunity and fitness in a wild population of Eurasian kestrels Falco tinnunculus

  • ORIGINAL PAPER
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The immune system of vertebrates consists of several components that partly interact and complement each other. Therefore, the assessment of the overall effectiveness of immune defence requires the simultaneous measurement of different immune components. In this study, we investigated intraspecific variability of innate [i.e. natural antibodies (NAb) and complement] and acquired (i.e. leucocyte profiles) immunity and its relationship with fitness correlates (i.e. blood parasite load and reproductive success in adults and body mass and survival until fledging in nestlings) in the Eurasian kestrel Falco tinnunculus. Immunity differed between nestlings and adults and also between adult males and females. Adult kestrels with higher levels of complement were less parasitised by Haemoproteus, and males with higher values of NAbs showed a higher reproductive success. In nestlings, the H/L ratio was negatively related to body mass. Survival until fledging was predicted by all measured immunological variables of nestlings as well as by their fathers' level of complement. This is the first time that innate immunity is linked to survival in a wild bird. Thus, intraspecific variation in different components of immunity predicts variation in fitness prospects in kestrels, which highlights the importance of measuring innate immune components together with components of the acquired immunity in studies assessing the effectiveness of the immune system in wild animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamo SA (2004) How should behavioural ecologists interpret measurements of immunity? Anim Behav 68:1443–1449

    Article  Google Scholar 

  • Al-Murrani WK, Al-Rawi AJ, Al-Hadithi MF, Al-Tikriti B (2006) Association between heterophil/lymphocyte ratio, a marker of “resistance” to stress and some production and fitness traits in chickens. Br Poultry Sci 47:443–448

    Article  CAS  Google Scholar 

  • Alonso JC, Huecas V, Alonso JA, Abelenda M, Muñoz-Pulido R, Puerta M (1991) Hematology and blood chemistry of adult hite storks (Ciconia ciconia). Comp Biochem Physiol A 98:395–397

    Article  Google Scholar 

  • Alonso-Álvarez C, Tella JL (2001) Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Can J Zool 79:101–105

    Article  Google Scholar 

  • Avilés JM, Sánchez JM, Parejo D (2001) Nest-boxes used by Eurasian kestrels Falco tinnunculus are preferred by rollers Coracias garrulus. Folia Zool 50:317–320

    Google Scholar 

  • Bonneaud C, Mazuc J, González G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379

    Article  PubMed  Google Scholar 

  • Both C, Visser ME, Verboven N (1999) Density-dependent recruitment rates in great tits: the importance of being heavier. Proc R Soc Lond B Biol Sci 266:465–469

    Article  Google Scholar 

  • Brinkhof MWG, Cave AJ, Perdeck AC (1997) The seasonal decline in the first-year survival of juvenile coots: an experimental approach. J Anim Ecol 66:73–82

    Article  Google Scholar 

  • Christe P, de Lope F, González G, Saino N, Møller AP (2001) The influence of environmental conditions on immune responses, morphology and recapture probability of nestling house martins (Delichon urbica). Oecologia 126:333–338

    Article  Google Scholar 

  • Cichon M, Dubiec A (2005) Cell-mediated immunity predicts the probability of local recruitment in nestling blue tits. J Evol Biol 18:962–966

    Article  PubMed  CAS  Google Scholar 

  • Cramp S, Simmons KEL (eds) (1980) Handbook of the birds of Europe, the middle East and North Africa. The birds of the Western Palearctic, vol II. Haws to bustards. Oxford University Press, Oxford

    Google Scholar 

  • Davis AK (2005) Effects of handling time and repeated sampling on avian white blood cell counts. J Field Ornithol 76:334–338

    Google Scholar 

  • Davis AK, Cook KC, Altizer S (2004) Leukocyte profiles in wild house finches with and without mycoplasmal conjunctivitis, a recently emerged bacterial disease. EcoHealth 1:362–373

    Article  Google Scholar 

  • Davis AK, Maney DL, Maerz JC (2008) The use of leucocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Article  Google Scholar 

  • de Lope F, González G, Pérez JJ, Møller AP (1993) Increased detrimental effects of ectoparasites on their bird hosts during adverse environmental conditions. Oecologia 95:234–240

    Article  Google Scholar 

  • Ewenson L, Zann RA, Flannery GR (2001) Body condition and immune response in wild zebra finches: effects of capture, confinement and captive-rearing. Naturwissenschaften 88:391–394

    Article  PubMed  CAS  Google Scholar 

  • Fargallo JA, Laaksonen T, Poyri V, Korpimäki E (2002) Inter-sexual differences in the immune response of Eurasian kestrel nestlings under food shortage. Ecol Lett 5:95–101

    Article  Google Scholar 

  • Fearon DT (1997) Seeking wisdom in innate immunity. Nature 388:323–324

    Article  PubMed  Google Scholar 

  • Fitze PS, Tschirren B, Richner H (2004) Life history and fitness consequences of ectoparasites. J Anim Ecol 73:216–226

    Article  Google Scholar 

  • Forero MG, González-Solís J, Igual JM, Hobson KA, Ruiz X, Viscor G (2006) Ecological and physiological variance in T-cell mediated immune response in Cory's shearwaters. Condor 108:865–876

    Article  Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Article  Google Scholar 

  • Hawkey C, Samour HJ, Henderson GM, Hart MG (1985) Haematological findings in captive gentoo penguins (Pygoscelis papua) with bumblefoot. Avian Pathol 14:251–256

    Article  PubMed  CAS  Google Scholar 

  • Hõrak P, Tegelmann L, Ots I, Møller AP (1999) Immune function and survival of great tit nestlings in relation to growth conditions. Oecologia 121:316–322

    Article  Google Scholar 

  • Korpimäki E, Tolonen P, Bennett GF (1995) Blood parasites, sexual selection and reproductive success of European kestrels. Ecoscience 2:335–343

    Google Scholar 

  • Lee AL, Martin LB II, Hasselquist D, Ricklefs RE, Wikelski M (2006) Contrasting adaptive immune defenses and blood parasite prevalence in closely related Passer sparrows. Oecologia 150:383–392

    Article  PubMed  Google Scholar 

  • Lobato E, Moreno J, Merino S, Sanz JJ, Arriero E (2005) Haematological variables are good predictors of recruitment in nestling pied flycatchers (Ficedula hypoleuca). Ecoscience 12:27–34

    Article  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Magrath RD (1991) Nestling weight and juvenile survival in the blackbird, Turdus merula. J Anim Ecol 60:335–351

    Article  Google Scholar 

  • Male D, Roitt I (2000) Introduction to the immune system. In: Roitt I, Brostoff J, Male D (eds) Immunology. Mosby, London, pp 1–11

    Google Scholar 

  • Martínez-Padilla J, Martínez J, Dávila JA, Merino S, Moreno J, Millán J (2004) Within-brood size differences, sex and parasites determine blood stress protein levels in Eurasian kestrel nestlings. Funct Ecol 18:426–434

    Article  Google Scholar 

  • Marzal A, de Lope F, Navarro C, Møller AP (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–541

    Article  PubMed  Google Scholar 

  • Masello JF, Choconi RG, Helmer M, Kremberg T, Lubjuhn T, Quillfeldt P (2009) Do leucocytes reflect condition in nestling burrowing parrots Cyanoliseus patagonus in the wild? Comp Biochem Phys A 152:176–181

    Article  Google Scholar 

  • Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol 29:275–286

    Article  PubMed  CAS  Google Scholar 

  • Matson KD, Cohen AA, Klasing KC, Ricklefs RE, Scheuerlein A (2006) No simple answers for ecological immunology: relationships among immune indices at the individual level break down at the species level in waterfowl. Proc R Soc Lond B Biol Sci 273:815–822

    Article  Google Scholar 

  • Mauck RA, Matson KD, Philipsborn J, Ricklefs RE (2005) Increase in the constitutive innate humoral immune system in Leach's Storm-petrel (Oceanodroma leucorhoa) nestlings is negatively correlated with growth rate. Funct Ecol 19:1001–1007

    Article  Google Scholar 

  • Maxwell MH (1993) Avian blood leucocyte responses to stress. World's Poult Sci J 49:34–43

    Article  Google Scholar 

  • Mendes L, Piersma T, Hasselquist D, Matson KD, Ricklefs RE (2006) Variation in the innate and acquired arms of the immune system among five shorebird species. J Exp Biol 209:284–291

    Article  PubMed  Google Scholar 

  • Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond B Biol Sci 267:2507–2510

    Article  CAS  Google Scholar 

  • Møller AP, Haussy C (2007) Fitness consequences of variation in natural antibodies and complement in the barn swallow Hirundo rustica. Funct Ecol 21:363–371

    Article  Google Scholar 

  • Møller AP, Saino N (2004) Immune response and survival. Oikos 104:299–304

    Article  Google Scholar 

  • Møller AP, de Lope F, Moreno J, González G, Pérez JJ (1994) Ectoparasites and host energetics—house martin bugs and house martin nestlings. Oecologia 98:263–268

    Article  Google Scholar 

  • Møller AP, Sorci G, Erritzoe J (1998) Sexual dimorphism in immune defense. Am Nat 152:605–619

    Article  PubMed  Google Scholar 

  • Moreno J, Potti J, Yorio P, García-Borboroglu P (2001) Sex differences in cell-mediated immunity in the Magellanic penguin Spheniscus megellanicus. Ann Zool Fenn 38:111–116

    Google Scholar 

  • Moreno J, Merino S, Sanz JJ, Arriero E, Morales J, Tomás G (2005) Nestling cell-mediated immune response, body mass and hatching date as predictors of local recruitment in the pied flycatcher Ficedula hypoleuca. J Avian Biol 36:251–260

    Article  Google Scholar 

  • Nordling D, Andersson M, Zohari S, Gustafsson L (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B Biol Sci 265:1291–1298

    Article  Google Scholar 

  • Ochsenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunology Today 21:624–630

    Google Scholar 

  • Ots I, Murumagi A, Hõrak P (1998) Haematological health state indices of reproducing great tits: methodology and sources of natural variation. Funct Ecol 12:700–707

    Article  Google Scholar 

  • Owen M, Black JM (1989) Factors affecting the survival of barnacle geese on migration from the breeding grounds. J Anim Ecol 58:603–617

    Article  Google Scholar 

  • Palacios MG, Cunnick JE, Vleck D, Vleck CM (2009) Ontogeny and innate adaptive immune defense components in free living tree swallows, Tachycineta bicolor. Dev Comp Immunol 33:456–463

    Article  PubMed  CAS  Google Scholar 

  • Parejo D, Silva N, Avilés JM (2007) Within-brood size differences affect innate and acquired immunity in Roller Coracias garrulus nestlings. J Avian Biol 38:717–725

    Article  Google Scholar 

  • Parmentier HK, Lammers A, Hoekman JJ, Reilingh GD, Zaanen ITA, Savelkoul HFJ (2004) Different levels of natural antibodies in chickens divergently selected for specific antibody responses. Dev Comp Immunol 28:39–49

    Article  PubMed  CAS  Google Scholar 

  • Perrins CM (1965) Population fluctuations and clutch-size in the Great tit, Parus major. J Anim Ecol 34:601–647

    Article  Google Scholar 

  • Quillfeldt P, Ruiz G, Aguilar Rivera M, Masello JF (2008) Variability in leucocyte profiles in thin-billed prions Pachyptila belcheri. Comp Biochem Physiol A 150:26–31

    Article  Google Scholar 

  • Råberg L, Stjernman M (2003) Natural selection on immune responsiveness in blue tits Parus caeruleus. Evolution 57:1670–1678

    Article  PubMed  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Article  Google Scholar 

  • Saino N, Bolzern AM, Møller AP (1997) Immunocompetence, ornamentation and viability of male barn swallows (Hirundo rustica). PNAS 94:549–552

    Article  PubMed  CAS  Google Scholar 

  • Tschirren B, Fitze PS, Richner H (2003) Sexual dimorphism in susceptibility to parasites and cell-mediated immunity in great tit nestlings. J Anim Ecol 72:839–845

    Article  Google Scholar 

  • Village A (1990) The kestrel. T. & A. D Poyser, London

    Google Scholar 

  • Whiteman NK, Matson KD, Bollmer JL, Parker PG (2006) Disease ecology in the Galapagos hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies. Proc R Soc Lond B Biol Sci 273:797–804

    Article  Google Scholar 

  • Wilson M, McNab R, Henderson B (2002) Bacterial disease mechanisms. An introduction to cellular microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Zuk M, Mckean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Zuk M, Stoehr AM (2002) Immune defence and host life history. Am Nat 160:S9–S22

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all people who collaborated in data collection either in the field (M. Guillemin, M. Kriloff, C. Landsmann, V. Lartigot and X. Mandine) or in the laboratory (J. M. Gasent, A. Moreno). C. Navarro helped us in the laboratory. Three anonymous referees and J. M. Avilés provided interesting suggestions to the manuscript. This research work was funded by the European Social Fund (doctoral grant to NS and I3P contract to DP) and by the Spanish Ministerio de Educación y Ciencia-FEDER, Secretaría de Estado de Universidades e Investigación (project ref. CGL2005-04654/BOS). Fieldwork was done under permission of the Junta de Extremadura and complying with the Spanish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deseada Parejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parejo, D., Silva, N. Immunity and fitness in a wild population of Eurasian kestrels Falco tinnunculus . Naturwissenschaften 96, 1193–1202 (2009). https://doi.org/10.1007/s00114-009-0584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0584-z

Keywords

Navigation