Skip to main content
Log in

Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia with fragmented erythrocytes, thrombocytopenia, and acute renal failure. Lack of complement inactivating factor H predisposes to the development of atypical HUS. Little is known about mechanisms linking complement activation with loss of erythrocyte integrity during HUS. Recent studies disclosed that increased cytosolic Ca2+ activity and cellular ceramide trigger programmed erythrocyte death or eryptosis, characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte surface. In the present study, we investigated whether eryptosis occurs during the course of HUS. To this end, erythrocytes from healthy volunteers were exposed to plasma from a patient with severe idiopathic recurrent HUS secondary to factor H depletion. Phosphatidylserine exposure (Annexin binding), cell volume (forward scatter), cytosolic Ca2+ activity (Fluo3 fluorescence), and ceramide formation [anti-ceramide antibody and enzymatic (diacylgycerol kinase) analysis] were determined. Exposure of erythrocytes to plasma from the patient, but not to plasma from healthy individuals, triggered Annexin binding. The effect of plasma on erythrocyte Annexin binding was abolished by plasmapheresis or filtration at 30 kDa. It was paralleled by formation of ceramide and increase of cytosolic Ca2+ activity. Enhanced Annexin binding of erythrocytes from healthy individuals was observed after exposure to plasma from three other patients with HUS. The proeryptotic effect of patient plasma was mimicked by exposure to the Ca2+ ionophore ionomycin, and eryptosis was potentiated in the presence of cell membrane-permeable C6-ceramide. Furthermore, in vitro complement activation similarly triggered erythrocyte phosphatidylserine exposure, an effect which was blunted by the addition of factor H. In conclusion, our present observations disclose a novel, pathophysiological, factor-H dependent mechanism leading to injury of erythrocytes during the course of hemolytic uremic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Corrigan JJ Jr, Boineau FG (2001) Hemolytic-uremic syndrome. Pediatr Rev 22:365–369

    PubMed  Google Scholar 

  2. Moake JL (2002) Thrombotic thrombocytopenic purpura and the hemolytic uremic syndrome. Arch Pathol Lab Med 126:1430–1433

    PubMed  Google Scholar 

  3. Tsai HM (2003) Advances in the pathogenesis, diagnosis, and treatment of thrombotic thrombocytopenic purpura. J Am Soc Nephrol 14:1072–1081

    Article  PubMed  Google Scholar 

  4. Avner ED, Harmon W, Niaudet P (eds) (2004) Pediatric nephrology, 5th edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  5. Bitzan M, Bickford BB, Foster GH (2004) Verotoxin (shiga toxin) sensitizes renal epithelial cells to increased heme toxicity: possible implications for the hemolytic uremic syndrome. J Am Soc Nephrol 15:2334–2343

    Article  PubMed  CAS  Google Scholar 

  6. Boyce TG, Swerdlow DL, Griffin PM (1995) Escherichia coli O157:H7 and the hemolytic-uremic syndrome. N Engl J Med 333:364–368

    Article  PubMed  CAS  Google Scholar 

  7. Hughes AK, Ergonul Z, Stricklett PK, Kohan DE (2002) Molecular basis for high renal cell sensitivity to the cytotoxic effects of shigatoxin-1: upregulation of globotriaosylceramide expression. J Am Soc Nephrol 13:2239–2245

    Article  PubMed  CAS  Google Scholar 

  8. Karmali MA, Petric M, Lim C, Fleming PC, Steele BT (1983) Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet 2:1299–1300

    Article  PubMed  CAS  Google Scholar 

  9. Te Loo DM, van Hinsbergh VW, van den Heuvel LP, Monnens LA (2001) Detection of verocytotoxin bound to circulating polymorphonuclear leukocytes of patients with hemolytic uremic syndrome. J Am Soc Nephrol 12:800–806

    Google Scholar 

  10. Galbusera M, Benigni A, Paris S, Ruggenenti P, Zoja C, Rossi C, Remuzzi G (1999) Unrecognized pattern of von Willebrand factor abnormalities in hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. J Am Soc Nephrol 10:1234–1241

    PubMed  CAS  Google Scholar 

  11. Noris M, Brioschi S, Caprioli J, Todeschini M, Bresin E, Porrati F, Gamba S, Remuzzi G (2003) Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362:1542–1547

    Article  PubMed  CAS  Google Scholar 

  12. Noris M, Remuzzi G (2005) Genetic abnormalities of complement regulators in hemolytic uremic syndrome: how do they affect patient management? Nat Clin Prac Nephrol 1:2–3

    Article  Google Scholar 

  13. Dragon-Durey MA, Fremeaux-Bacchi V, Loirat C, Blouin J, Niaudet P, Deschenes G, Coppo P, Herman FW, Weiss L (2004) Heterozygous and homozygous factor h deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J Am Soc Nephrol 15:787–795

    Article  PubMed  CAS  Google Scholar 

  14. Dragon-Durey MA, Loirat C, Cloarec S, Macher MA, Blouin J, Nivet H, Weiss L, Fridman WH, Fremeaux-Bacchi V (2005) Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol 16:555–563

    Article  PubMed  CAS  Google Scholar 

  15. Goodship TH, Liszewski MK, Kemp EJ, Richards A, Atkinson JP (2004) Mutations in CD46, a complement regulatory protein, predispose to atypical HUS. Trends Mol Med 10:226–231

    Article  PubMed  CAS  Google Scholar 

  16. Fremeaux-Bacchi V, Dragon-Durey MA, Blouin J, Vigneau C, Kuypers D, Boudailliez B, Loirat C, Rondeau E, Fridman WH (2004) Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet 41:e84

    Article  PubMed  CAS  Google Scholar 

  17. Kavanagh D, Kemp EJ, Mayland E, Winney RJ, Duffield JS, Warwick G, Richards A, Ward R, Goodship JA, Goodship TH (2005) Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol 16:2150–2155

    Article  PubMed  CAS  Google Scholar 

  18. Dlott JS, Danielson CF, Blue-Hnidy DE, McCarthy LJ (2004) Drug-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a concise review. Ther Apher Dial 8:102–111

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan B, Meier-Kriesche HU, Napoli KL, Kahan BD (1998) The effects of relative timing of sirolimus and cyclosporine microemulsion formulation coadministration on the pharmacokinetics of each agent. Clin Pharmacol Ther 63:48–53

    Article  PubMed  CAS  Google Scholar 

  20. Lin CC, King KL, Chao YW, Yang AH, Chang CF, Yang WC (2003) Tacrolimus-associated hemolytic uremic syndrome: a case analysis. J Nephrol 16:580–585

    PubMed  Google Scholar 

  21. Thurnher D, Kletzmayr J, Formanek M, Quint C, Czerny C, Burian M, Kornek G (2001) Chemotherapy-related hemolytic-uremic syndrome following treatment of a carcinoma of the nasopharynx. Oncology 61:143–146

    Article  PubMed  CAS  Google Scholar 

  22. Lang KS, Duranton C, Poehlmann H, Myssina S, Bauer C, Lang F, Wieder T, Huber SM (2003) Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ 10:249–256

    Article  PubMed  CAS  Google Scholar 

  23. Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285:C1553–C1560

    PubMed  CAS  Google Scholar 

  24. Woon LA, Holland JW, Kable EP, Roufogalis BD (1999) Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts. Cell Calcium 25:313–320

    Article  PubMed  CAS  Google Scholar 

  25. Andrews DA, Yang L, Low PS (2002) Phorbol ester stimulates a protein kinase C-mediated agatoxin-TK-sensitive calcium permeability pathway in human red blood cells. Blood 100:3392–3399

    Article  PubMed  CAS  Google Scholar 

  26. de Jong K, Rettig MP, Low PS, Kuypers FA (2002) Protein kinase C activation induces phosphatidylserine exposure on red blood cells. Biochemistry 41:12562–12567

    Article  PubMed  CAS  Google Scholar 

  27. Head DJ, Lee ZE, Poole J, Avent ND (2005) Expression of phosphatidylserine (PS) on wild-type and Gerbich variant erythrocytes following glycophorin-C (GPC) ligation. Br J Haematol 129:130–137

    Article  PubMed  CAS  Google Scholar 

  28. Matarrese P, Straface E, Pietraforte D, Gambardella L, Vona R, Maccaglia A, Minetti M, Malorni W (2005) Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J 19:416–418

    PubMed  CAS  Google Scholar 

  29. Lang KS, Myssina S, Brand V, Sandu C, Lang PA, Berchtold S, Huber SM, Lang F, Wieder T (2004) Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ 11:231–243

    Article  PubMed  CAS  Google Scholar 

  30. Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, Lang F (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202

    Article  PubMed  CAS  Google Scholar 

  31. Barvitenko NN, Adragna NC, Weber RE (2005) Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 15:1–18

    Article  PubMed  CAS  Google Scholar 

  32. Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8

    Article  PubMed  CAS  Google Scholar 

  33. Rice L, Alfrey CP (2005) The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem 15:245–250

    Article  PubMed  CAS  Google Scholar 

  34. Schwarzer E, Kühn H, Valente E, Arese P (2005) Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem 16(4–6):133–146

    PubMed  Google Scholar 

  35. Closse C, Dachary-Prigent J, Boisseau MR (1999) Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 107:300–302

    Article  PubMed  CAS  Google Scholar 

  36. Gallagher PG, Chang SH, Rettig MP, Neely JE, Hillery CA, Smith BD, Low PS (2003) Altered erythrocyte endothelial adherence and membrane phospholipid asymmetry in hereditary hydrocytosis. Blood 101:4625–4627

    Article  PubMed  CAS  Google Scholar 

  37. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  PubMed  CAS  Google Scholar 

  38. Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA 95:3077–3081

    Article  PubMed  CAS  Google Scholar 

  39. Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Friedrich B, Risler T, Wieder T, Lang F (2003) Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol 14:2750–2757

    Article  PubMed  CAS  Google Scholar 

  40. Lang PA, Kaiser S, Myssina S, Birka C, Weinstock C, Northoff H, Wieder T, Lang F, Huber SM (2004) Effect of vibrio parahaemolyticus haemolysin on human erythrocytes. Cell Microbiol 6:391–400

    Article  PubMed  CAS  Google Scholar 

  41. Hughes-Jones NC, Polley MJ, Telford R, Gardner B, Kleinschmidt G (1964) Optimal conditions for detecting blood group antibodies by the antiglobulin test. Vox Sang 9:385–395

    Article  PubMed  CAS  Google Scholar 

  42. Lapierre Y, Rigal D, Adam J, Josef D, Meyer F, Greber S, Drot C (1990) The gel test: a new way to detect red cell antigen-antibody reactions. Transfusion 30:109–113

    Article  PubMed  CAS  Google Scholar 

  43. Lang PA, Kempe DS, Myssina S, Tanneur V, Birka C, Laufer S, Lang F, Wieder T, Huber SM (2005) PGE(2) in the regulation of programmed erythrocyte death. Cell Death Differ 12(5):248–415

    Article  CAS  Google Scholar 

  44. Lang PA, Kempe DS, Tanneur V, Eisele K, Klarl BA, Myssina S, Jendrossek V, Ishii S, Shimizu T, Waidmann M, Hessler G, Huber SM, Lang F, Wieder T (2005) Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci 118:1233–1243

    Article  PubMed  CAS  Google Scholar 

  45. Dekkers DW, Comfurius P, Bevers EM, Zwaal RF (2002) Comparison between Ca2+-induced scrambling of various fluorescently labelled lipid analogues in red blood cells. Biochem J 362:741–747

    Article  PubMed  CAS  Google Scholar 

  46. Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, Schulze-Osthoff K, Wesselborg S (2001) Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ 8:1197–1206

    Article  PubMed  CAS  Google Scholar 

  47. Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, Slomianny C, Sartiaux C, Alonso C, Huart JJ, Montreuil J, Ameisen JC (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8:1143–1156

    Article  PubMed  CAS  Google Scholar 

  48. Daugas E, Cande C, Kroemer G (2001) Erythrocytes: death of a mummy. Cell Death Differ 8:1131–1133

    Article  PubMed  CAS  Google Scholar 

  49. Myssina S, Lang PA, Kempe DS, Kaiser S, Huber SM, Wieder T, Lang F (2004) Cl− channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte ‘apoptosis’. Cell Physiol Biochem 14:241–248

    Article  PubMed  CAS  Google Scholar 

  50. Kempe DS, Lang PA, Duranton C, Akel A, Lang KS, Huber SM, Wieder T, Lang F (2005) Enhanced programmed cell death of iron deficient erythrocytes. FASEB J 20(2):368–370

    PubMed  Google Scholar 

  51. Andrews DA, Low PS (1999) Role of red blood cells in thrombosis. Curr Opin Hematol 6:76–82

    Article  PubMed  CAS  Google Scholar 

  52. Lang KS, Myssina S, Lang PA, Tanneur V, Kempe DS, Mack AF, Huber SM, Wieder T, Lang F, Duranton C (2004) Inhibition of erythrocyte phosphatidylserine exposure by urea and Cl. Am J Physiol Renal Physiol 286:F1046–F1053

    Article  PubMed  CAS  Google Scholar 

  53. Nunomura W, Takakuwa Y, Tokimitsu R, Krauss SW, Kawashima M, Mohandas N (1997) Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. J Biol Chem 272:30322–30328

    Article  PubMed  CAS  Google Scholar 

  54. Takakuwa Y, Mohandas N (1988) Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions. J Clin Invest 82:394–400

    Article  PubMed  CAS  Google Scholar 

  55. Anderson DR, Davis JL, Carraway KL (1977) Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase, and a membrane-bound protease. J Biol Chem 252:6617–6623

    PubMed  CAS  Google Scholar 

  56. Allan D, Billah MM, Finean JB, Michell RH (1976) Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature 261:58–60

    Article  PubMed  CAS  Google Scholar 

  57. Cohen CM, Gascard P (1992) Regulation and post-translational modification of erythrocyte membrane and membrane-skeletal proteins. Semin Hematol 29:244–292

    PubMed  CAS  Google Scholar 

  58. Minetti G, Piccinini G, Balduini C, Seppi C, Brovelli A (1996) Tyrosine phosphorylation of band 3 protein in Ca2+/A23187-treated human erythrocytes. Biochem J 320 (Pt 2):445–450

    PubMed  CAS  Google Scholar 

  59. Kolesnick RN, Kronke M (1998) Regulation of ceramide production and apoptosis. Annu Rev Physiol 60:643–665

    Article  PubMed  CAS  Google Scholar 

  60. Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336

    Article  PubMed  CAS  Google Scholar 

  61. Perretti M, Solito E (2004) Annexin 1 and neutrophil apoptosis. Biochem Soc Trans 32:507–510

    Article  PubMed  CAS  Google Scholar 

  62. Dang CT, Magid MS, Weksler B, Chadburn A, Laurence J (1999) Enhanced endothelial cell apoptosis in splenic tissues of patients with thrombotic thrombocytopenic purpura. Blood 93:1264–1270

    PubMed  CAS  Google Scholar 

  63. Laurence J, Mitra D, Steiner M, Staiano-Coico L, Jaffe E (1996) Plasma from patients with idiopathic and human immunodeficiency virus-associated thrombotic thrombocytopenic purpura induces apoptosis in microvascular endothelial cells. Blood 87:3245–3254

    PubMed  CAS  Google Scholar 

  64. Mitra D, Jaffe EA, Weksler B, Hajjar KA, Soderland C, Laurence J (1997) Thrombotic thrombocytopenic purpura and sporadic hemolytic-uremic syndrome plasmas induce apoptosis in restricted lineages of human microvascular endothelial cells. Blood 89:1224–1234

    PubMed  CAS  Google Scholar 

  65. Gulbins E, Bissonnette R, Mahboubi A, Martin S, Nishioka W, Brunner T, Baier G, Baier-Bitterlich G, Byrd C, Lang F (1995) FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 2:341–351

    Article  PubMed  CAS  Google Scholar 

  66. Brenner B, Ferlinz K, Grassme H, Weller M, Koppenhoefer U, Dichgans J, Sandhoff K, Lang F, Gulbins E (1998) Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ 5:29–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft, Nr. La 315/4-3, La 315/6-1, and La 315/13-1. P. A. L., D. K., and J. N. were recipients of a stipend from the Center for Interdisciplinary Clinical Research, IZKF (Fö. 01KS9602; Promotionskolleg “Molekulare Medizin # 1547”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, P.A., Beringer, O., Nicolay, J.P. et al. Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med 84, 378–388 (2006). https://doi.org/10.1007/s00109-006-0058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0058-0

Keywords

Navigation