Skip to main content
Log in

Competing orders in M-theory: superfluids, stripes and metamagnetism

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyse the infinite class of d = 3 CFTs dual to skew-whiffed AdS 4 × SE 7 solutions of D = 11 supergravity at finite temperature and charge density and in the presence of a magnetic field. We construct black hole solutions corresponding to the unbroken phase, and at zero temperature some of these become dyonic domain walls of an Einstein-Maxwell-pseudo-scalar theory interpolating between AdS 4 in the UV and new families of dyonic \( Ad{S_2}\times {{\mathbb{R}}^2} \) solutions in the IR. The black holes exhibit both diamagnetic and paramagnetic behaviour. We analyse superfluid and striped instabilities and show that for large enough values of the magnetic field the superfluid instability disappears while the striped instability remains. For larger values of the magnetic field there is also a first-order metamagnetic phase transition and at zero temperature these black hole solutions exhibit hyperscaling violation in the IR with dynamical exponent z = 3/2 and θ = −2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008)065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  2. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008)015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].

    ADS  Google Scholar 

  7. H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].

    ADS  Google Scholar 

  8. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and Electric AdS Solutions in String-and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602 [arXiv:0704.1604] [INSPIRE].

    Article  ADS  Google Scholar 

  13. H. Ooguri and C.-S. Park, Spatially Modulated Phase in Holographic quark-gluon Plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C.B. Bayona, K. Peeters and M. Zamaklar, A Non-homogeneous ground state of the low-temperature Sakai-Sugimoto model, JHEP 06 (2011) 092 [arXiv:1104.2291] [INSPIRE].

    Article  ADS  Google Scholar 

  15. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012)211601 [arXiv:1203.0533] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev. D 86 (2012)064010 [arXiv:1204.1734] [INSPIRE].

    ADS  Google Scholar 

  18. N. Iizuka et al., Bianchi Attractors: a Classification of Extremal Black Brane Geometries, JHEP 07 (2012) 193 [arXiv:1201.4861] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic Stripes, arXiv:1211.5600 [INSPIRE].

  20. G. Lifschytz and M. Lippert, Holographic Magnetic Phase Transition, Phys. Rev. D 80 (2009)066007 [arXiv:0906.3892] [INSPIRE].

    ADS  Google Scholar 

  21. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    ADS  Google Scholar 

  24. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H. Singh, Lifshitz/Schródinger Dp-branes and dynamical exponents, JHEP 07 (2012) 082 [arXiv:1202.6533] [INSPIRE].

    Article  ADS  Google Scholar 

  27. K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012)106006 [arXiv:1202.5935] [INSPIRE].

    ADS  Google Scholar 

  28. P. Dey and S. Roy, Lifshitz-like space-time from intersecting branes in string/M theory, JHEP 06 (2012) 129 [arXiv:1203.5381] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Duff, B. Nilsson and C. Pope, The criterion for vacuum stability in Kaluza-Klein supergravity, Phys. Lett. B 139 (1984) 154 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. A. Imaanpur and M. Naghdi, Dual Instantons in Anti-membranes Theory, Phys. Rev. D 83 (2011)085025 [arXiv:1012.2554] [INSPIRE].

    ADS  Google Scholar 

  32. D. Forcella and A. Zaffaroni, Non-supersymmetric CS-matter theories with known AdS duals, Adv. High Energy Phys. 2011 (2011) 393645 [arXiv:1103.0648] [INSPIRE].

    MathSciNet  Google Scholar 

  33. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009)126008 [arXiv:0901.1160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  35. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. K. Goldstein et al., Holography of Dyonic Dilaton Black Branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

    Article  ADS  Google Scholar 

  38. F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [INSPIRE].

    ADS  Google Scholar 

  39. S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007)066001 [arXiv:0704.1160] [INSPIRE].

    ADS  Google Scholar 

  40. V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [INSPIRE].

    ADS  Google Scholar 

  43. S.A. Grigera et al., Disorder-Sensitive Phase Formation Linked to Metamagnetic Quantum Criticality, Science 12 (2004) 1154.

    Article  ADS  Google Scholar 

  44. A.J. Millis, A.J. Schofield, G.G. Lonzarich and S.A. Grigera, Metamagnetic Quantum Criticality in Metals, Physical Review Letters 88 (2002) 217204 [cond-mat/0109440].

    Article  ADS  Google Scholar 

  45. E. D’Hoker and P. Kraus, Holographic Metamagnetism, Quantum Criticality and Crossover Behavior, JHEP 05 (2010) 083 [arXiv:1003.1302] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  46. E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  47. E. D’Hoker and P. Kraus, Charged Magnetic Brane Solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [INSPIRE].

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Withers.

Additional information

ArXiv ePrint: 1212.0871

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donos, A., Gauntlett, J.P., Sonner, J. et al. Competing orders in M-theory: superfluids, stripes and metamagnetism. J. High Energ. Phys. 2013, 108 (2013). https://doi.org/10.1007/JHEP03(2013)108

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)108

Keywords

Navigation