Skip to main content
Log in

Late-acting self-incompatibility in tea plant (Camellia sinensis)

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The self-incompatibility of tea plant (Camellia sinensis (L.) O. Kuntze) was studied with the methods of aniline blue fluorescence assay and paraffin sections. The characteristics of pollen tube elongation after hand pollination was analyzed in 4 tea cultivars, including ‘Keemenzhong’, ‘Longjing-changye’, ‘Fuding-dabaicha’ and ‘Yabukita’, under self-pollination and cross-pollination, respectively. Although there were some difference among cultivars, pollen tubes elongated through the style and reach the ovary successfully at 48 h after pollination for both cross- and self-pollen tubes in all the four cultivars of tea. Pollen tubes entered into the ovule micropyles, however, only for cross-pollination, but not for self-pollination. Pollen tubes of selfing plants, failed in fertilizing, seemed have some difficulties to enter the ovule. All of which indicated that the self-incompatibility of tea plant is a late-acting self-incompatibility system (LSI) or an ovarian sterility (OS), in which the self incompatibility was due to none self pollen tube penetrating into the ovule and no fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balasaravanan T., Pius P.K., Raj Kumar R., Muraleedharan N. & Shasany A.K. 2003. Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Sci. 165: 365–372.

    Article  CAS  Google Scholar 

  • Bittencourt N.S. & Semir J. 2006. Floral biology and late-acting self-incompatibility in Jacaranda racemosa (Bignoniaceae). Aust. J. Bot. 54: 315–324.

    Article  Google Scholar 

  • Chen L., Zhao L.P. & Gao Q.K. 2005. Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis). Plant Sci. 168: 359–363.

    Article  CAS  Google Scholar 

  • Chen L., Zhou Z.X. & Yang Y.J. 2007. Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154: 239–248.

    Article  CAS  Google Scholar 

  • de Nettancourt D. 1997. Incompatibility in angiosperms. Sex Plant Reprod. 10: 185–199.

    Article  Google Scholar 

  • Fuchinoue Y. 1969. Studies on the analysis of self-incompatibility alleles of tea varieties and pseudogamy in the genus Camellia. Saitama-ken-Chagyo-Kenkyu-Hokoku 4: 1–92. (In Japanese with English summary)

    Google Scholar 

  • Fuchinoue Y. 1979. Analysis of self-incompatibility alleles of major varieties of tea. Jpn. Agr. Res. Q. 13(1): 43–48.

    Google Scholar 

  • Gibbs P.E. & Bianchi M.B. 1999. Does late acting self incompatibility (LSI) show family clustering? Two more species of Bignoniacea with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann. Bot. 84: 449–457.

    Article  Google Scholar 

  • Hiratsuka S., Takahashi E. & Hirata N. 1987. Pollen tube growth inhibitors involved in the ovary of self-incompatible Japanese pear. Plant Cell Physiol. 28(2): 293–299.

    CAS  Google Scholar 

  • Hiscock S.J. 2000. Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae). Heredity 85: 10–19.

    Article  PubMed  Google Scholar 

  • Jiang C.J. 2005. Tea breeding. China Agricultural Press, Peiking, 255pp.

    Google Scholar 

  • Kaundun S.S. & Matsumoto S. 2002. Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome 45: 1041–1048.

    Article  PubMed  CAS  Google Scholar 

  • Kunz C., Chang A., Faure J.D., Clarke A.E., Polya G.M. & Anderson M.A. 1996. Phosphorylation of style S-RNases by Ca2+ -dependent protein kinases from pollen tubes. Sex Plant Reprod. 9: 25–34.

    Article  Google Scholar 

  • McClure B. & Franklin-Tong V. 2006. Gametophytic self incompatibility: understanding the cellular mechanisms involved in ’self’ pollen tube inhibition. Planta 224: 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Mondal T.K. 2002. Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter-simple sequence repeat polymerase chain reaction. Euphytica 128: 307–315.

    Article  Google Scholar 

  • Mondal T.K., Bhattacharya A., Laxmikumaran M. & Ahuja P.S. 2004. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tiss. Org. 76: 195–254.

    Article  CAS  Google Scholar 

  • Porcher E. & Lande R. 2005. Loss of gametophytic selfincompatibility with evolution of inbreeding depression. Evolution 59: 46–60.

    PubMed  Google Scholar 

  • Rogers S. 1975. Preliminary observations on pollen tube incompatibility in some tea clones. Tea Quarterly 45: 91–100.

    Google Scholar 

  • Sage T.L., Price M.V. & Waser N.M. 2006. Self-sterility in Ipomopsis aggregata (Polemoniaceae) is due to prezygotic ovule degeneration. Am. J. Bot. 93(2): 254–262.

    Article  PubMed  Google Scholar 

  • Sage T.L., Strumas F., Cole B. & Barrett S.C.H. 1999. Differential ovule development following self- and cross-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae). Am. J. Bot. 86: 855–870.

    Article  PubMed  CAS  Google Scholar 

  • Seavey S.R. & Bawa K.S. 1986. Late-acting self-incompatibility in angiosperms. Bot. Rev. 52: 195–219.

    Article  Google Scholar 

  • Shimura T. & Oosone K. 1956. Studies on the fertilization of tea plant. Japan. J. Breed. 6(2): 111–114.

    Google Scholar 

  • Sijacic P., Wang X., Skirpan A.L., Wang Y., Dowd P.E., McCubbin A.G., Huang S.S. & Kao T.H. 2004. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429: 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T. 1988. Cytogenetic studies on the origin of Camellia X vernalis. III. A method to identify the cultivars using self-incompatibility. J. Japan. Soc. Hort. Sci. 56(4): 452–456.

    Google Scholar 

  • Wachira F.N. & Kamunya S.K. 2005. Pseudo-self-incompatibility in some tea clones (Camellia sinensis (L.) O. Kuntze). J. Hortic. Sci. Biotech. 80(6): 716–720.

    Google Scholar 

  • Zhao L.P., Liu Z., Chen L., Yao M.Z. & Wang X.C. 2008. Generation and characterization of 24 novel EST derived microsatellite from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties. Conserv. Genet. 9: 1327–1331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Hao, S., Wang, L. et al. Late-acting self-incompatibility in tea plant (Camellia sinensis). Biologia 67, 347–351 (2012). https://doi.org/10.2478/s11756-012-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0018-9

Key words

Navigation