Skip to main content

Self-incompatibility in Pear

  • Chapter
  • First Online:
The Pear Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 889 Accesses

Abstract

Self-incompatibility (SI) has been widely investigated at both molecular and cellular levels in pear. This trait is controlled by a single multi-allelic locus encoding at least two components from the pollen and the pistil. The stylar-S determinant is an S-glycoprotein (S-RNase) that can inhibit pollen tube growth in a self-pistil, and induces a series of changes in reactive oxygen species (ROS), calcium (Ca2+), actin cytoskeleton, and phosphatidic acid, leading to programmed cell death in incompatible pollen tubes. At present, a total of 67 S-RNase genes have been identified and have served in selecting appropriate pollinators in pear orchards. The pollen-S determinant has also been investigated in pear. Although a group of F-box genes have been identified in the S-locus, it remains unclear as to which gene(s) are involved in self-incompatibility reactions. In pear, only a few cultivars have experienced loss of self-incompatibility, due to either stylar or pollen mutations, or due to polyploidy. Except for the deletion of S4-RNase in cultivar Osa-Nijisseiki, other stylar-tissue mutations, including abnormal expression and post-transcript modification, are difficult to study, and are yet to be explained at the molecular level. Similarly, the mechanism of pollen tissue mutation and polyploidy require further investigations in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brewbaker JL (1954) Incompatibility in autotetraploid Trifolium repens L. I. Competition and self-compatibility. Genetics 39:307–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin, p 322p

    Book  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8:203–213

    Article  CAS  Google Scholar 

  • Goldway M, Takasaki-Yasuda T, Sanzol J, Mota M, Zisovich A, Stern RA, Sansavini S (2009) Renumbering the S-RNase alleles of European pears (Pyrus communis L.) and cloning the S109 RNase allele. Sci Hortic 119:417–422

    Article  CAS  Google Scholar 

  • Chen J, Wang P, de Graaf BHJ, Zhang H, Jiao H, Tang C, Zhang S, Wu J (2018) Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton. Plant Cell 30:1023–1039

    Article  CAS  Google Scholar 

  • Gao YB, Zhou HS, Chen JQ, Jiang XT, Tao ST, Wu JY, Zhang SL (2015) Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in Pyrus pyrifolia. Physiol Plant 153:603–615

    Article  CAS  Google Scholar 

  • Gu C, Zhang SL, Huang SX, HengW Liu QZ, Wu HQ, Wu J (2010) Identification of S-genotypes in Chinese cherry cultivars (Prunus pseudocerasus). Tree Genet Genomes 6:579–590

    Article  Google Scholar 

  • Gu C, Liu QZ, Yang YN, Zhang SJ, Khan MA, Wu J, Zhang SL (2013) Inheritance of hetero-diploid pollen S-haplotype in self-compatible tetraploid Chinese cherry (Prunus pseudocerasus Lindl). PLoS ONE 8:e61219

    Article  CAS  Google Scholar 

  • Gu C, Liu QZ, Khan MA, Wu J, Zhang SL (2014) Hetero-diploid pollen grains that represent self-compatibility are incompatible with non-self receptors in tetraploid Chinese cherry (Prunus pseudocerasus Lindl). Tree Genet Genomes 10:619–625

    Article  Google Scholar 

  • Heng W, Wu J, Wu H, Cao Y, Nishio T, Zhang SL (2011) Recognition specificity of self-incompatibility in Pyrus and Malus. Mol Breed 28:549–557

    Article  CAS  Google Scholar 

  • Heng W, Wu HQ, Huang SX, Zhang SJ, Wu J, Fang CQ, Zhang SL (2015) Identification of genotypes and novel RNases in native Chinese pear. J Hortic Sci Biotechnol 83(5):629–634

    Article  CAS  Google Scholar 

  • Hirata N (1989) Self-compatible mutant in Japanese pear. Gamma Field Symp 28:71–80

    Google Scholar 

  • Hiratsuka S, Nakashima M, Kamasaki K, Kubo T, Kawai Y (1999) Comparison of an S-protein expression between self-compatible and self-incompatible Japanese pear cultivars. Sex Plant Reprod 12:88–93

    Article  CAS  Google Scholar 

  • Hiratsuka S, Hirota M, Takahashi E, Hirata N (1985) Seasonal changes in the self-incompatibility and pollen tube growth in Japanese pears (Pyrus serotine Rehd.). J Japan Soc Hortic Sci 53:377–382

    Article  Google Scholar 

  • Hiratsuka S, Zhang SL, Nakagawa E, Kawai Y (2001) Selective inhibition of the growth of incompatible pollen tubes by S-protein in the Japanese pear. Sex Plant Reprod 13:209–215

    Article  CAS  Google Scholar 

  • Huang SX, Wu HQ, Li YR, Wu J, Zhang SJ, Heng W, Zhang SL (2008) Competitive interaction between two functional S-haplotypes confer self-compatibility on tetraploid Chinese cherry (Prunus pseudocerasus Lindl. cv. Nanjing Chuisi). Plant Cell Rep 27:1075–1085

    Article  CAS  Google Scholar 

  • Ishimizu T, Inoue K, Shimonaka M, Saito T, Terai O, Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98:961–967

    Article  CAS  Google Scholar 

  • Jiang XT, Gao YB, Zhou HS, Chen JQ, Wu JY, Zhang SL (2014) Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia. Plant Cell Rep 33:255–263

    Article  Google Scholar 

  • Kakui H, Tsuzuki T, Koba T, Sassa H (2007) Polymorphism of SFBB-gamma and its use for S genotyping in Japanese pear (Pyrus pyrifolia). Plant Cell Rep 26:1619–1625

    Article  CAS  Google Scholar 

  • Kakui H, Kato M, Ushijima K, Kitaguchi M, Kato S, Sassa H (2011) Sequence divergence and loss-of-function phenotypes of S locus F-box brothers genes are consistent with non-self recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia). Plant J 68:1028–1038

    Article  CAS  Google Scholar 

  • Lewis D (1976) Incompatibility in flowering plants. Recept Recognit Ser A2:167–198

    Google Scholar 

  • Li MF, Li XF, Han ZhH, Shu HR, Li T (2009) Molecular analysis of two Chinese pear (Pyrus bretschneideri Rehd.) spontaneous self-compatible mutants, Yan Zhuang and Jin Zhui. Plant Biol 11:774–783

    Article  CAS  Google Scholar 

  • Liu ZQ, Xu GH, Zhang SL (2007) Pyrus pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen and tubes in vitro. Protoplasma 232:61–67

    Article  Google Scholar 

  • Norioka N, Ohnishi Y, Norioka S, Ishimizu T, Nakanishi T, Sakiyama F (1995) Nucleotide sequences of cDNAs encoding S2- and S4-RNases (D49527 and D49528 for EMBL) from Japanese pear (Pyrus pyrifolia Nakai) (PGR95-020). Plant Physiol 108:1343

    Google Scholar 

  • Norioka N, Norioka S, Ohnishi Y, Ishimizu T, Oneyama C, Nakanishi T, Sakiyama F (1996) Molecular cloning and nucleotide sequences of cDNAs encoding S-allele specific stylar RNases in a self-incompatible cultivar and its self-compatible mutant of Japanese pear, Pyrus pyrifolia Nakai. J Biochem 120:335

    Article  CAS  Google Scholar 

  • Okada K, Tonaka N, Moriya Y, Norioka N, Sawamura Y, Matsumoto T, Nakanishi T, Takasaki-Yasuda T (2008) Deletion of a 236 kb region around S4-RNase in a stylar-part mutant S4sm-haplotype of Japanese pear. Plant Mol Biol 66:389–400

    Article  CAS  Google Scholar 

  • Okada K, Tonaka N, Taguchi T, Ichikawa T, Sawamura Y, Nakanishi T, Takasaki-Yasuda T (2011) Related polymorphic F-box protein genes between haplotypes clustering in the BAC contig sequences around the S-RNase of Japanese pear. J Exp Bot 62:1887–1902

    Article  CAS  Google Scholar 

  • Qi YJ, Wang YT, Han YX, Qiang S, Wu J, Tao ST, Zhang SL, Wu HQ (2011a) Self-compatibility of ‘Zaoguan’ (Pyrus bretschneideri Rehd.) is associated with style-part mutations. Genetica 139:1149–1158

    Article  Google Scholar 

  • Qi YJ, Wu HQ, Cao YF, Wu J, Tao ST, Zhang SL (2011b) Heteroallelic diploid pollen led to self-compatibility in tetraploid cultivar ‘Sha 01’ (Pyrus sinkiangensis Yü). Tree Genet Genomes 7:685–695

    Article  Google Scholar 

  • Qu HY, Shang ZL, Zhang SL, Liu LM, Wu JY (2007) Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytol 174:524–536

    Article  CAS  Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1992) Self-incompatibility-related RNases in styles of Japanese pear (Pyrus serotina Rehd.). Plant Cell Physiol 33:811–814

    CAS  Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1993) Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear, Pyrus serotina Rehd. Mol Gen Genet 241:17–25

    Article  CAS  Google Scholar 

  • Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol Gen Genet 250:547–557

    CAS  PubMed  Google Scholar 

  • Sassa H, Hirano H, Nishio T, Koba T (1997) Pistil-specific self-compatible mutation caused by deletion of the S-RNase gene in Japanese pear (Prunus serotina). Plant J 12:223–227

    Article  CAS  Google Scholar 

  • Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869–1881

    Article  CAS  Google Scholar 

  • Sato Y (1993) Breeding of self-compatible Japanese pear. In: Hayashi T, Omura M, Scott NS (eds) Techniques on gene diagnosis and breeding in fruit trees. FTRS (Fruit Tree Research Station), Tsukuba, Japan, pp 241–247

    Google Scholar 

  • Sanzol J (2009) Pistil-function breakdown in a new S-allele of European pear, S o21 , confers self-compatibility. Plant Cell Rep 28:457–467

    Article  CAS  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    Article  CAS  Google Scholar 

  • Wang CL, Xu GH, Jiang XT, Chen G, Wu J, Wu HQ, Zhang SL (2009) S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. Plant J 57:220–229

    Article  CAS  Google Scholar 

  • Wang CL, Wu J, Xu GH, Gao YB, Chen G, Wu JY, Wu HQ, Zhang SL (2010) S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. J Cell Sci 123:4301–4309

    Article  CAS  Google Scholar 

  • Wang GM, Gu C, Qiao X, Zhao BY, Ke YQ, Guo BB, Hao PP, Qi KJ, Zhang SL (2017) Characteristic of pollen tube that grew into self-style in pear cultivar and parent assignment for cross-pollination. Scient Hort 216:226–233

    Article  CAS  Google Scholar 

  • Wu HQ, Zhang SL, Qu HY (2007) Molecular and genetic analyses of S-4(SM) RNase allele in Japanese pear ‘Osa-Nijisseiki’ (Pyrus pyrifolia Nakai). Plant Breed 126:77–82

    Article  CAS  Google Scholar 

  • Wu J, Gu C, Du YH, Wu HQ, Liu WS, Liu N, Lu J, Zhang SL (2011) Self-compatibility of ‘Katy’apricot (Prunus armeniaca L.) is associated with pollen-part mutations. Sex Plant Reprod 24:23–35

    Article  Google Scholar 

  • Wu J, Li M, Li T (2013) Genetic features of the spontaneous self-compatible mutant, ‘Jin Zhui’ (Pyrus bretschneideri Rehd.). PLoS ONE 8:e76509

    Article  CAS  Google Scholar 

  • Zhang SL, Zhou JT, Xu YL, Chen DX, Xu GH, Wu GF (2003) Semi vitro culture of pear style and identification of the genotypes of pear self-incompatibility. Acta Hortic Sinica 30:703–706 (in Chinese)

    CAS  Google Scholar 

  • Zhang YY, Zhang SL, Wu J, Zhang RP, Li XG (2007) Identification of S-genotypes in 14 pear cultivars. J Fruit Sci 24:135–139 (in Chinese)

    CAS  Google Scholar 

  • Zhang SL, Hiralsuka S (2000) Cultivar and developmental differences in S-protein cincenlralion and self-incompatibility in Japanese pear. HortSci 35:917–920

    Article  Google Scholar 

  • Zuriaga E, Molina L, Badenes ML, Romero C (2012) Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae. Plant Mol Biol 79:229–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoling Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, S., Gu, C. (2019). Self-incompatibility in Pear. In: Korban, S. (eds) The Pear Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11048-2_10

Download citation

Publish with us

Policies and ethics