Skip to main content
Log in

Quantitative Drug Interactions Prediction System (Q-DIPS)

A Dynamic Computer-Based Method to Assist in the Choice of Clinically Relevant In Vivo Studies

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Metabolic drug interactions are a major source of clinical problems, but their investigation during drug development is often incomplete and poorly specific. In vitro studies give very accurate data on the interactions of drugs with selective cytochrome P450 (CYP) isozymes, but their interpretation in the clinical context is difficult. On the other hand, the design of in vivo studies is sometimes poor (choice of prototype substrate, doses, schedule of administration, number of volunteers), with the risk of minimising the real potential for interaction.

To link in vitro and in vivo studies, several authors have suggested using extrapolation techniques, based on the comparison of in vitro inhibition data with the active in vivo concentrations of the inhibitor. However, the lack of knowledge of one or several important parameters (role of metabolites, intrahepatocyte accumulation) often limits the possibility for safe and accurate predictions. In consequence, these methods are useful to complement in vitro studies and help design clinically relevant in vivo studies, but they will not totally replace in vivo investigation in the future.

We have developed a computerised application, the quantitative drug interactions prediction system (Q-DIPS), to make both qualitative deductions and quantitative predictions on the basis of a database containing updated information on CYP substrates, inhibitors and inducers, as well as pharmacokinetic parameters. We also propose a global approach to drug interactions problems — ‘good interactions practice’ — to help design rational drug interaction investigations, sequentially associating in vitro studies, in vitro/in vivo extrapolation and finally well-designed in vivo clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table I

Similar content being viewed by others

References

  1. Krayenbühl JC, Vozeh S, Kondo-Oestreicher M, et al. Drugdrug interactions of new active substances: mibefradil example. Eur J Clin Pharmacol 1999; 55: 559–65

    Article  PubMed  Google Scholar 

  2. Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequence, gene mapping, accession number and nomenclature. Pharmacogenetics 1996; 6: 1–42

    Article  PubMed  CAS  Google Scholar 

  3. Smith G, Stubbins MJ, Harries LW, et al. Molecular genetics of the human cytochrome P450 monooxygenase superfamily. Xenobiotica 1998; 28: 1129–65

    Article  PubMed  CAS  Google Scholar 

  4. Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450, structure, mechanism and biochemistry. New York: Plenum Press, 1995: 473–535

    Google Scholar 

  5. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22: 1–21

    Article  PubMed  CAS  Google Scholar 

  6. Pelkonen O, Mäenpää J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 1998; 28: 1203–53

    Article  PubMed  CAS  Google Scholar 

  7. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998; 18: 84–112

    PubMed  CAS  Google Scholar 

  8. Guengerich FP. Roleofcytochrome P450 enzymesindrug-drug interactions. Adv Pharmacol 1997; 43: 7–35

    Article  PubMed  CAS  Google Scholar 

  9. Physican’s Desk Reference. Montvale (NJ): Medical Economic Co., 1996

  10. Spyker DA, Harvey ED, Harvey BE, et al. Assessment and reporting of clinical pharmacology information in drug labelling. Clin Pharmacol Ther 2000; 67: 196–200

    Article  PubMed  CAS  Google Scholar 

  11. Huang SM, Lesko LJ, Williams RL. Assessment of the quality and quantity of drug-drug interaction studies in recent NDA submissions: study design and data analysis issues. J Clin Pharmacol 1999; 39; 1006–14

    Article  PubMed  CAS  Google Scholar 

  12. Gillam EM. Human cytochrome P450 enzymes expressed in bacteria: reagents to probe molecular interactions in toxicology. Clin Exp Pharmacol Physiol 1998; 25: 877–86

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez FJ, Korzekwa KR. Cytochrome P450 expression systems. Annu Rev Pharmacol Toxicol 1995; 35: 369–90

    Article  PubMed  CAS  Google Scholar 

  14. Renaud JP, Peyronneau MA, Urban P, et al. Recombinant yeast in drug metabolism. Toxicology 1993; 82: 39–52

    Article  PubMed  CAS  Google Scholar 

  15. Strolin Benedetti M, Bani M. Design of in vitro studies to predict in vivo inhibitory drug-drug interactions. Pharmacol Res 1998; 38: 81–8

    Article  PubMed  CAS  Google Scholar 

  16. Glue P, Clement RP. Cytochrome P450 enzymes and drug metabolism — basic concepts and methods of assessment. Cell Mol Neurobiol 1999; 19: 309–23

    Article  PubMed  CAS  Google Scholar 

  17. Transon C, Lecoeur S, Leemann T, et al. Interindividual variability in catalytic activity and immunoreactivity of three major human liver cytochrome P450 isozymes. Eur J Clin Pharmacol 1996; 51: 79–85

    Article  PubMed  CAS  Google Scholar 

  18. Ono S, Hatanaka T, Hotta H, et al. Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica 1996; 26: 681–93

    Article  PubMed  CAS  Google Scholar 

  19. Newton DJ, Wang RW, Lu AY. Cytochrome P450 inhibitors: evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos 1995; 23: 154–8

    PubMed  CAS  Google Scholar 

  20. Rodrigues AD. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human microsomes. Biochem Pharmacol 1999; 57: 465–80

    Article  PubMed  CAS  Google Scholar 

  21. Bertz RJ, Grannenman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58

    Article  PubMed  CAS  Google Scholar 

  22. Cytochrome P450 drug interactions pocket reference card [online]. Available from: URL: http://www.dml.georgetown.edu/depts/pharmacology/refcard/html [Accessed 2001 Jun 26]

  23. Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev 1995; 27: 397–417

    Article  PubMed  CAS  Google Scholar 

  24. Buck ML. The cytochrome P450 enzyme system and its effect on drug metabolism. Ped Pharmacother 1997; 3: 305–8

    Google Scholar 

  25. Johnson MD, Newkirk G, White JR. Clinically significant drug interactions. Postgrad Med 1999; 105: 193–206

    PubMed  CAS  Google Scholar 

  26. Bonnabry P, Sievering J, Leemann T, et al. Quantitative drug interactions prediction system (Q-DIPS): a computer-based prediction and management support system for drug metabolism interactions. Eur J Clin Pharmacol 1999; 55: 341–7

    Article  PubMed  CAS  Google Scholar 

  27. Rodrigues AD, Wong SL. Application of human liver microsomes in metabolism-based drug-drug interactions: in vitro-in vivo correlations and the Abbott laboratories experience. Adv Pharmacol 1997; 43: 65–101

    Article  PubMed  CAS  Google Scholar 

  28. von Moltke LL, Greenblatt DJ, Schmider J, et al. In vivo approaches to predicting drug interactions in vivo. Biochem Pharmacol 1998; 55: 113–22

    Article  Google Scholar 

  29. Ito K, Iwatsubo T, Kanamitsu S, Nakjima Y, et al. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 1998; 38: 461–99

    Article  PubMed  CAS  Google Scholar 

  30. Nakasa H, Nakamura H, Ono S, et al. Prediction of drug-drug interactions of zonisamide metabolism in humans from in vitro data. Eur J Clin Pharmacol 1998; 54: 177–83

    Article  PubMed  CAS  Google Scholar 

  31. Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinial implications. Clin Pharmacokinet 1998; 35: 361–90

    Article  PubMed  CAS  Google Scholar 

  32. Kedderis GL. Extrapolation of in vitro enzyme induction data to humans in vivo. Chem Biol Interact 1997; 107: 109–21

    Article  PubMed  CAS  Google Scholar 

  33. Leemann TD, Dayer P. Quantitative prediction of in vivo drug metabolism and interactions from in vitro data. In: Pacifici GM, Fracchia GN, editors. Advances in drug metabolism in man. Luxembourg: European Commission, 1995: 783–830

    Google Scholar 

  34. Davit B, Reynolds K, Yuan R, et al. FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug-drug interactions: impact on labeling. J Clin Pharmacol 1999; 39: 899–910

    Article  PubMed  CAS  Google Scholar 

  35. Obach RS. Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine and propranolol. Drug Metab Dispos 1997; 25: 1359–69

    PubMed  CAS  Google Scholar 

  36. Le Blanc GA. Hepatic vectorial transport of xenobiotics. Chem Biol Interact 1994; 90: 101–20

    Article  Google Scholar 

  37. Meijer DK, Mol WE, Müller M, et al. Carrier-mediated transport in the hepatic distribution and elimination of drugs, with special reference to the category of organic cations. J Pharmacokinet Biopharm 1990; 18: 35–70

    PubMed  CAS  Google Scholar 

  38. Yamazaki M, Suzuki Y, Iga T, et al. Uptake of organic anions by isolated rat hepatocytes. A classification in terms of ATP-dependency. J Hepatology 1992; 14: 41–7

    Article  CAS  Google Scholar 

  39. Yamazaki M, Suzuki H, Hanano M, et al. Na+-independent multispecific anion transporter mediates active transport of pravastatin into rat liver. Am J Physiol 1993; 264: G36–44

    PubMed  CAS  Google Scholar 

  40. Von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibitors of alprazolam metabolism in vitro: effect of serotonin-reuptake-inhibitor antidepressants, ketoconazole and quinidine. Br J Clin Pharmacol 1994; 38: 23–31

    Article  CAS  Google Scholar 

  41. Ohtawa M, Masuda N, Akasaka I, et al. Cellular uptake of fluvastatin, an inhibitor of HMG-CoA reductase, by rat cultured hepatocytes and human aortic endothelial cells. Br J Clin Pharmacol 1999; 47: 383–9

    Article  PubMed  CAS  Google Scholar 

  42. Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry: in vivo drug metabolism/drug interaction studies — study design, data analysis, and recommendations for dosing and labeling [online]. Rock-ville (MD): CDER, 1998. Available from: URL: http://www.fda.gov/cder/guidance/2635fnl.htm [Accessed 2001 Jul 31]

  43. The European Agency for the Evaluation of Medicinal Products, Committee for Proprietary Medicinal Products (CMPM). Note for guidance on the investigation of drug interactions. London: European Agency for the Evaluation of Medicinal Products, 1997

  44. Smith DA, Abel SM, Hyland R, et al. Human cytochrome P450s: selectivity and measurement in vivo. Xenobiotica 1998; 28: 1095–128

    Article  PubMed  CAS  Google Scholar 

  45. Greenblatt DJ. Presystemic extraction: mechanisms and consequences. J Clin Pharmacol 1993; 33: 650–6

    PubMed  CAS  Google Scholar 

  46. Canafax DM, Graves NM, Hilligoss DM, et al. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991; 51: 1014–8

    Article  PubMed  CAS  Google Scholar 

  47. Lopez-Gil JA. Fluconazole-cyclosporine interaction: a dosedependent effect? Ann Pharmacother 1993; 27: 427–30

    PubMed  CAS  Google Scholar 

  48. Collignon P, Hurley B, Mitchell D. Interaction of fluconazole with ciclosporin. Lancet 1989; I: 1262

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Research Foundation (32-36600.92).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Bonnabry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnabry, P., Sievering, J., Leemann, T. et al. Quantitative Drug Interactions Prediction System (Q-DIPS). Clin Pharmacokinet 40, 631–640 (2001). https://doi.org/10.2165/00003088-200140090-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140090-00001

Keywords

Navigation