Skip to main content

Advertisement

Log in

Predicting Genomic Alterations of Phosphatidylinositol-3 Kinase Signaling in Hepatocellular Carcinoma: A Radiogenomics Study Based on Next-Generation Sequencing and Contrast-Enhanced CT

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Exploring the genomic landscape of hepatocellular carcinoma (HCC) provides clues for therapeutic decision-making. Phosphatidylinositol-3 kinase (PI3K) signaling is one of the key pathways regulating HCC aggressiveness, and its genomic alterations have been correlated with sorafenib response. In this study, we aimed to predict somatic mutations of the PI3K signaling pathway in HCC samples through machine-learning-based radiomic analysis.

Methods

HCC patients who underwent next-generation sequencing and preoperative contrast-enhanced CT were recruited from West China Hospital and The Cancer Genome Atlas for model training and validation, respectively. Radiomic features were extracted from volumes of interest (VOIs) covering the tumor (VOItumor) and peritumoral areas (5 mm [VOI5mm], 10 mm [VOI10mm], and 20 mm [VOI20mm] from tumor margin). Factor analysis, logistic regression analysis, least absolute shrinkage and selection operator, and random forest analysis were applied for feature selection and model construction. Model performance was characterized based on the area under the receiver operating characteristic curve (AUC).

Results

A total of 132 HCC patients (mean age: 61.1 ± 14.7 years; 108 men) were enrolled. In the training set, the AUCs of radiomic signatures based on single CT phases were moderate (AUC 0.694–0.771). In the external validation set, the radiomic signature based on VOI10mm in arterial phase demonstrated the highest AUC (0.733) among all models. No improvement in model performance was achieved after adding the tumor radiomic features or manually assessed qualitative features.

Conclusions

Machine-learning-based radiomic analysis had potential for characterizing alterations of PI3K signaling in HCC and could help identify potential candidates for sorafenib treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.

    Article  PubMed  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  3. Altekruse SF, Henley SJ, Cucinelli JE, McGlynn KA. Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am J Gastroenterol. 2014;109(4):542–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  CAS  PubMed  Google Scholar 

  5. Llovet JM, Villanueva A, Marrero JA, Schwartz M, Meyer T, Galle PR, et al. Trial design and endpoints in hepatocellular carcinoma: AASLD consensus conference. Hepatology (Baltimore, Md). 2021;73(Suppl 1):158–91.

    Article  Google Scholar 

  6. Xu L, Tang Y, Li H, Zhou J, Zhou Z, Zhang Y, et al. Sorafenib as an adjuvant therapy for hepatocellular carcinoma with microvascular invasion after radical resection a prospective multicenter nonrandomized controlled study. J Clin Oncol. 2020;38(15_Suppl):e16685e-e.

    Article  Google Scholar 

  7. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro de Moura M, et al. Identification of an Immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017;153(3):812–26.

    Article  CAS  PubMed  Google Scholar 

  8. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017; 169(7):1327-41.e23

  9. Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, et al. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9(8):1124–41.

    Article  CAS  PubMed  Google Scholar 

  10. Khemlina G, Ikeda S, Kurzrock R. The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer. 2017;16(1):149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008; 135(6):1972-83, 83.e1-11.

  12. Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res. 2019;25(7):2116–26.

    Article  CAS  PubMed  Google Scholar 

  13. Grabinski N, Ewald F, Hofmann BT, Staufer K, Schumacher U, Nashan B, et al. Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells. Mol Cancer. 2012;11:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.

    Article  CAS  PubMed  Google Scholar 

  15. Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ, et al. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: association with MMP-9. Hepatol Res. 2009;39(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  16. Bhaskar PT, Hay N. The two TORCs and Akt. Develop Cell. 2007;12(4):487–502.

    Article  CAS  Google Scholar 

  17. Dimri M, Satyanarayana A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers. 2020; 12(2).

  18. Zhang H, Wang Q, Liu J, Cao H. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib-derived chemo-resistance in hepatocellular carcinoma. Oncol Lett. 2018;15(6):9377–84.

    PubMed  PubMed Central  Google Scholar 

  19. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9(5):1303–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, et al. The era of radiogenomics in precision medicine: an emerging approach to support diagnosis, treatment decisions, and prognostication in oncology. Front Oncol. 2020;10:570465.

    Article  PubMed  Google Scholar 

  21. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25(6):675–80.

    Article  CAS  PubMed  Google Scholar 

  22. Ueno A, Masugi Y, Yamazaki K, Komuta M, Effendi K, Tanami Y, et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol. 2014;61(5):1080–7.

    Article  CAS  PubMed  Google Scholar 

  23. Dong Z, Huang K, Liao B, Cai H, Dong Y, Huang M, et al. Prediction of sorafenib treatment-related gene expression for hepatocellular carcinoma: preoperative MRI and histopathological correlation. Eur Radiol. 2019;29(5):2272–82.

    Article  PubMed  Google Scholar 

  24. Hectors SJ, Lewis S, Besa C, King MJ, Said D, Putra J, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol. 2020;30(7):3759–69.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321-37.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Han M, Zhang Y, Zhou Q, Rong C, Zhan Y, Zhou X, et al. Large-scale evaluation of V-Net for organ segmentation in image guided radiation therapy: SPIE; 2019.

  28. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zwanenburg A, Vallières M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, et al. The Image Biomarker Standardization Initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–38.

    Article  PubMed  Google Scholar 

  30. Benndorf M, Baltzer PA, Kaiser WA. Assessing the degree of collinearity among the lesion features of the MRI BI-RADS lexicon. Eur J Radiol. 2011;80(3):e322–4.

    Article  PubMed  Google Scholar 

  31. Bismeijer T, van der Velden BHM, Canisius S, Lips EH, Loo CE, Viergever MA, et al. Radiogenomic analysis of breast cancer by linking MRI phenotypes with tumor gene expression. Radiology. 2020;296(2):277–87.

    Article  PubMed  Google Scholar 

  32. Vehkalahti K. Foundations of factor analysis, second edition by Stanley A. Mulaik. Int Stat Rev. 2010; 78(2):327-8

  33. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc B. 1996;58(1):267–88.

    Google Scholar 

  34. Lu X, Li M, Zhang H, Hua S, Meng F, Yang H, et al. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. Phys Med Biol. 2020;65(5):055012.

    Article  CAS  PubMed  Google Scholar 

  35. Shiri I, Maleki H, Hajianfar G, Abdollahi H, Ashrafinia S, Hatt M, et al. Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning algorithms. Mol Imag Biol. 2020;22(4):1132–48.

    Article  CAS  Google Scholar 

  36. O’Donnell JS, Massi D, Teng MWL, Mandala M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol. 2018;48:91–103.

    Article  CAS  PubMed  Google Scholar 

  37. Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol. 2019;59:125–32.

    Article  CAS  PubMed  Google Scholar 

  38. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273–91.

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aziz SA, Davies M, Pick E, Zito C, Jilaveanu L, Camp RL, et al. Phosphatidylinositol-3-kinase as a therapeutic target in melanoma. Clin Cancer Res. 2009;15(9):3029–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY, et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem. 2000;275(11):8027–31.

    Article  CAS  PubMed  Google Scholar 

  43. Wu Y, Zhang Y, Qin X, Geng H, Zuo D, Zhao Q. PI3K/AKT/mTOR pathway-related long non-coding RNAs: roles and mechanisms in hepatocellular carcinoma. Pharmacol Res. 2020;160:105195.

    Article  CAS  PubMed  Google Scholar 

  44. Dong J, Zhai B, Sun W, Hu F, Cheng H, Xu J. Activation of phosphatidylinositol 3-kinase/AKT/snail signaling pathway contributes to epithelial-mesenchymal transition-induced multi-drug resistance to sorafenib in hepatocellular carcinoma cells. PloS ONE. 2017;12(9):e0185088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Masuda M, Chen WY, Miyanaga A, Nakamura Y, Kawasaki K, Sakuma T, et al. Alternative mammalian target of rapamycin (mTOR) signal activation in sorafenib-resistant hepatocellular carcinoma cells revealed by array-based pathway profiling. Mol Cell Proteom. 2014;13(6):1429–38.

    Article  CAS  Google Scholar 

  46. Guan DX, Shi J, Zhang Y, Zhao JS, Long LY, Chen TW, et al. Sorafenib enriches epithelial cell adhesion molecule-positive tumor initiating cells and exacerbates a subtype of hepatocellular carcinoma through TSC2-AKT cascade. Hepatology (Baltimore, Md). 2015;62(6):1791–803.

    Article  CAS  Google Scholar 

  47. Law EK, Sieuwerts AM, LaPara K, Leonard B, Starrett GJ, Molan AM, et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci Adv. 2016;2(10):e1601737.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. Cancer evolution: mathematical models and computational inference. Systematic Biol. 2015;64(1):e1-25.

    Article  CAS  Google Scholar 

  49. Chen HN, Shu Y, Liao F, Liao X, Zhang H, Qin Y, et al. Genomic evolution and diverse models of systemic metastases in colorectal cancer. Gut. 2021.

  50. Zhang JB, Guo K, Sun HC, Zhu XD, Zhang B, Lin ZH, et al. Prognostic value of peritumoral heat-shock factor-1 in patients receiving resection of hepatocellular carcinoma. Br J Cancer. 2013;109(6):1648–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen DP, Ning WR, Jiang ZZ, Peng ZP, Zhu LY, Zhuang SM, et al. Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma. J Hepatol. 2019;71(2):333–43.

    Article  CAS  PubMed  Google Scholar 

  52. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359(19):1995–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ju M-J, Qiu S-J, Fan J, Xiao Y-S, Gao Q, Zhou J, et al. Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol. 2009;131(4):498–510.

    Article  CAS  PubMed  Google Scholar 

  54. Kim S, Shin J, Kim D-Y, Choi GH, Kim M-J, Choi J-Y. Radiomics on gadoxetic acid–enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma. Clin Cancer Res. 2019;25(13):3847–55.

    Article  CAS  PubMed  Google Scholar 

  55. Lee S, Kim SH, Lee JE, Sinn DH, Park CK. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma. J Hepatol. 2017;67(3):526–34.

    Article  CAS  PubMed  Google Scholar 

  56. Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70(6):1133–44.

    Article  PubMed  Google Scholar 

  57. Wei J, Jiang H, Zeng M, Wang M, Niu M, Gu D, et al. Prediction of microvascular invasion in hepatocellular carcinoma via deep learning: a multi-center and prospective validation study. Cancers. 2021; 13(10).

  58. Kim S, Shin J, Kim DY, Choi GH, Kim MJ, Choi JY. Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma. Clin Cancer Res. 2019;25(13):3847–55.

    Article  CAS  PubMed  Google Scholar 

  59. Yu Y, Fan Y, Wang X, Zhu M, Hu M, Shi C, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Eur Radiol. 2021.

Download references

Acknowledgement

We are most grateful to West China Biobanks, Department of Clinical Research Management, West China Hospital, Sichuan University for their support regarding human tissue samples. We thank the TCGA working group for generating publicly available data.

Funding

This work was supported by grants from the National Key Technologies R&D Program (2018YFC1106800), the Natural Science Foundation of China (82173124, 82173248, 82103533, 82002572, 82002967, 81972747, 81872004, and 8210071122), the Fellowship of China National Postdoctoral Program for Innovative Talents (BX20200225 and BX20200227), the China Postdoctoral Science Foundation (2021M692278 and 2020M673231), the Science and Technology Support Program of Sichuan Province (2021YJ0436 and 2021YFS0141), the Postdoctoral Science Foundation of Sichuan University (2021SCU12007), the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYJC18008), and the Postdoctoral Science Foundation of West China Hospital (2020HXBH075 and 2020HXBH007).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HL, HJ, DS, BS and YZ; Bioinformatics analyses: HL, HJ and YC; VOI segmentation: HJ and TD; Methodology: HL, HJ, TY, MH, ZX, FS; Data analysis: HL, HJ, YC and MH; Writing and revision: HL, HJ, KY and MB; Reviewing: all authors. The author(s) read and approved the final manuscript.

Corresponding authors

Correspondence to Dinggang Shen PhD, Bin Song PhD or Yong Zeng PhD.

Ethics declarations

Conflict of interest

Mustafa R. Bashir: Research support to institution (federal): 5U01-DK061713-19, 1R01CA249765-01. Research support to institution (industry): Carmot Therapeutics, Corcept Therapeutics, CymaBay Therapeutics, Diabetes & Endocrinology Consultants, Madrigal Pharmaceuticals, Metacrine, NGM Biopharmaceuticals, Pinnacle Clinical Research, Polarean Imaging, ProSciento Inc, Siemens Healthineers, Consulting: MedPace, ICON, Corcept Therapeutics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Jiang, H., Chen, Y. et al. Predicting Genomic Alterations of Phosphatidylinositol-3 Kinase Signaling in Hepatocellular Carcinoma: A Radiogenomics Study Based on Next-Generation Sequencing and Contrast-Enhanced CT. Ann Surg Oncol 29, 4552–4564 (2022). https://doi.org/10.1245/s10434-022-11505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-11505-4

Navigation