Skip to main content

Advertisement

Log in

Tumor-Specific Labeling of Pancreatic Cancer Using a Humanized Anti-CEA Antibody Conjugated to a Near-Infrared Fluorophore

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background/Purpose

Development of a humanized fluorophore-conjugated antibody that can improve contrast for fluorescence-guided oncologic surgeries.

Methods

BxPC-3-GFP pancreatic cancer cells were injected into flanks of nude mice. Fragments of subcutaneous tumors were grafted onto the pancreatic tail of recipient mice to create orthotopic xenograft models of pancreatic cancer. After tumors developed for 4 weeks, a humanized anti-carcinoembryonic antigen antibody conjugated to an 800 nm near-infrared fluorescent dye (hM5A-IR800) was injected intravenously. Mice were imaged at 6, 12, 24, 48, and 72 h after injection.

Results

Fluorescence imaging showed that hM5A-IR800 specifically localized to BxPC-3 human pancreatic cancer cells. The fluorescent probe localized to cell surfaces in vitro and specifically co-localized with green fluorescent protein-labeled tumors in an orthotopic pancreatic xenograft model in vivo. Serial imaging at specific time points showed peak signal intensity of the orthotopic pancreatic tumor at 48 h; this time point corresponded with a maximal tumor-to-background ratio (TBR) of 16.6 at 48 h.

Discussion

hM5A-IR800 was successfully able to specifically label orthotopic pancreatic tumors in situ. The longer wavelength allowed deeper tissue penetration, particularly in tumor areas covered by normal pancreatic parenchyma. The probe had expected kinetics for an antibody-fluorophore conjugate, with the peak signal intensity reached at 48 h. A clear tumor signal was observed with a TBR > 5 at all time points, with high contrast (TBR of 16.6) at 48 h.

Conclusion

hM5A-IR800 demonstrated excellent tumor localization and a very bright signal. It is a promising agent for future clinical fluorescence-guided surgery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
FIG. 5

Similar content being viewed by others

References

  1. Strobel O, Hank T, Hinz U, Bergmann F, Schneider L, Springfeld C, et al. Pancreatic cancer surgery: the new R-status counts. Ann Surg. 2017;265(3):565–73.

    Article  PubMed  Google Scholar 

  2. Markov P, Satoi S, Kon M. Redefining the R1 resection in patients with pancreatic ductal adenocarcinoma. J Hepato-Biliary-Pancreat Sci. 2016;23(9):523–32.

    Article  Google Scholar 

  3. Metildi CA, Kaushal S, Snyder CS, Hoffman RM, Bouvet M. Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model. J Surg Res. 2013;179(1):87–93.

    Article  PubMed  Google Scholar 

  4. Metildi CA, Kaushal S, Luiken GA, Hoffman RM, Bouvet M. Advantages of fluorescence-guided laparoscopic surgery of pancreatic cancer labeled with fluorescent anti-CEA antibodies in an orthotopic mouse model. J Am Coll Surg. 2014;219(1):132–41.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hiroshima Y, Maawy A, Metildi CA, Zhang Y, Uehara F, Miwa S, et al. Successful fluorescence-guided surgery on human colon cancer patient-derived orthotopic xenograft mouse models using a fluorophore-conjugated anti-CEA antibody and a portable imaging system. J Laparoendosc Adv Surg Tech A. 2014;24(4):241–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu J, Ma R, Cao H, Wang Z, Jing C, Sun Y, et al. Intraoperative imaging of metastatic lymph nodes using a fluorophore-conjugated antibody in a HER2/neu-expressing orthotopic breast cancer mouse model. Anticancer Res. 2013;33(2):419–24.

    PubMed  Google Scholar 

  7. Yano S, Zhang Y, Miwa S, Kishimoto H, Urata Y, Bouvet M, et al. Precise navigation surgery of tumours in the lung in mouse models enabled by in situ fluorescence labelling with a killer-reporter adenovirus. BMJ Open Respir Res. 2015;2(1):e000096.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yano S, Miwa S, Kishimoto H, Toneri M, Hiroshima Y, Yamamoto M, et al. Experimental curative fluorescence-guided surgery of highly invasive glioblastoma multiforme selectively labeled with a killer-reporter adenovirus. Mol Ther. 2015;23(7):1182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yano S, Takehara K, Kishimoto H, Urata Y, Kagawa S, Bouvet M, et al. Adenoviral targeting of malignant melanoma for fluorescence-guided surgery prevents recurrence in orthotopic nude-mouse models. Oncotarget. 2015;7(14):18558–72.

    PubMed Central  Google Scholar 

  10. Metildi CA, Tang C-M, Kaushal S, Leonard SY, Magistri P, Tran Cao HS, et al. In vivo fluorescence imaging of gastrointestinal stromal tumors using fluorophore-conjugated anti-KIT antibody. Ann Surg Oncol. 2013;20 (Suppl 3):S693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Uehara F, Hiroshima Y, Miwa S, Tome Y, Yano S, Yamamoto M, et al. Fluorescence-guided surgery of retroperitoneal-implanted human fibrosarcoma in nude mice delays or eliminates tumor recurrence and increases survival compared to bright-light surgery. PLoS ONE. 2015;10(2):e0116865.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yano S, Miwa S, Kishimoto H, Uehara F, Tazawa H, Toneri M, et al. Targeting tumors with a killer-reporter adenovirus for curative fluorescence-guided surgery of soft-tissue sarcoma. Oncotarget. 2015;6(15):13133–48.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kaushal S, McElroy MK, Talamini MA, Moossa AR, Bouvet M, Luiken GA, et al. Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J Gastrointest Surg. 2008;12(11):1938–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maawy AA, Hiroshima Y, Kaushal S, Luiken GA, Hoffman RM, Bouvet M. Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models. J Biomed Opt. 2013;18(12):126016.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Morton BA, O’Connor-Tressel M, Beatty BG, Shively JE, Beatty JD. Artifactual CEA Elevation due to Human Anti-Mouse Antibodies. Arch Surg. 1988;123(10):1242–6.

    Article  CAS  PubMed  Google Scholar 

  16. Yazaki PJ, Sherman MA, Shively JE, Ikle D, Williams LE, Wong JYC, et al. Humanization of the anti-CEA T84.66 antibody based on crystal structure data. Protein Eng Des Sel. 2004;17(5):481–9.

    Article  CAS  PubMed  Google Scholar 

  17. Fu XY, Besterman JM, Monosov A, Hoffman RM. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci U S A. 1991;88:9345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bouvet M, Yang M, Nardin S, Wang X, Jiang P, Baranov E, et al. Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models. Clin Exp Metastasis. 2000;18:213–8.

    Article  CAS  PubMed  Google Scholar 

  19. Matsuo Y, Raimondo M, Woodward TA, Wallace MB, Gill KR, Tong Z, et al. CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer. 2009;125:1027–37.

    Article  CAS  PubMed  Google Scholar 

  20. Girgis MD, Olafsen T, Kenanova V, McCabe KE, Wu AM, Tomlinson JS. Targeting CEA in pancreas cancer xenografts with a mutated scFv-Fc antibody fragment. EJNMMI Res. 2011;1(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maawy AA, Hiroshima Y, Zhang Y, Heim R, Makings L, Garcia-Guzman M, et al. Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer. PLoS ONE. 2015;10(3):e0121989.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boogerd LSF, Handgraaf HJM, Lam H-D, Huurman VAL, Farina-Sarasqueta A, Frangioni JV, et al. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance. Surg Endosc. 2017;31(2):952–61.

    Article  PubMed  Google Scholar 

  23. de Geus SWL, Boogerd LSF, Swijnenburg R-J, Mieog JSD, Tummers WSFJ, Prevoo HAJM, et al. Selecting tumor-specific molecular targets in pancreatic adenocarcinoma: paving the way for image-guided pancreatic surgery. Mol Imaging Biol. 2016;18(6):807–19.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yamaguchi K, Enjoji M, Tsuneyoshi M. Pancreatoduodenal carcinoma: a clinicopathologic study of 304 patients and immunohistochemical observation for CEA and CA19-9. J Surg Oncol. 1991;47(3):148–54.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of Cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res. 2015;21(16):3658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenthal EL, Moore LS, Tipirneni K, Boer E de, Stevens TM, Hartman YE, et al. Sensitivity and specificity of Cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin Cancer Res. 2017;23(16):4744–52.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu B, Sevick-Muraca EM. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br J Radiol. 2015;88(1045):20140547.

    Google Scholar 

  28. Moore LS, Rosenthal EL, Chung TK, Boer E de, Patel N, Prince AC, et al. Characterizing the utilities and limitations of repurposing an open-field optical imaging device for fluorescence-guided surgery in head and neck cancer patients. J Nucl Med. 2016;50(2):246–51.

    Google Scholar 

  29. Abuqayyas L, Balthasar JP. Pharmacokinetic mAb–mAb interaction: anti-VEGF mAb decreases the distribution of anti-CEA mAb into colorectal tumor xenografts. AAPS J. 2012;14(3):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2009;12(1):33–43.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maawy AA, Hiroshima Y, Zhang Y, Luiken GA, Hoffman RM, Bouvet M. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer. J Biomed Opt. 2014;19(10):101504.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

Robert M. Hoffman is a non-salaried affiliate of AntiCancer, Inc. Thinzar M. Lwin, Takashi Murakami, Kentaro Miyake, Paul J. Yazaki, John E. Shivley, and Michael Bouvet have no conflicts of interest to declare.

Funding

This study was funded by US National Cancer Institute grant numbers CA126023, CA142669 (MB and AntiCancer, Inc.), VA Merit Review grant number 1 I01 BX003856-01A1 (MB), NIH/NCI T32CA121938 (TL), and P30 2P30CA023100-28 (UCSD Cancer Center Microscopy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bouvet MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lwin, T.M., Murakami, T., Miyake, K. et al. Tumor-Specific Labeling of Pancreatic Cancer Using a Humanized Anti-CEA Antibody Conjugated to a Near-Infrared Fluorophore. Ann Surg Oncol 25, 1079–1085 (2018). https://doi.org/10.1245/s10434-018-6344-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-018-6344-6

Keywords

Navigation