Skip to main content
Log in

Electrowetting: Electrocapillarity, saturation, and dynamics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Electrowetting is an electrocapillary phenomenon, i.e. the surface charge generated at the solid-liquid interface through an external voltage improves the wettability in the system. The Young-Lippmann equation provides the simplest thermodynamic framework and describes electrowetting adequately. Saturation, i.e. the reduced or nullified effectiveness of the external voltage below a threshold contact angle value, was and remains the most controversial issue in the physics of electrowetting. A simple estimation of the limits of validity of the Young model is obtained by setting the solid-liquid interfacial tension to zero. This approach predicts acceptably the change in electrowetting mechanism but not the minimal value of the contact angle achievable during electrowetting. The mechanism of saturation is, in all probability, related to charge injection into the dielectric layer insulating the working electrode but physical details are scarce. Surface force and spectroscopic techniques should be deployed in order to improve our understanding of the surface charging of insulators immersed in conductive liquids. Electrowetting in solid-liquid-liquid systems is generally more effective and robust. Electrowetting offers new ways of studying the dynamics of liquid movement as it allows selective changes in the wettability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th edition (Wiley, New York, 1997)

  2. P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004)

  3. F. Mugele, J.-C. Baret, J. Phys. Condens. Matter 17, R705 (2005)

    Article  ADS  Google Scholar 

  4. R.B. Fair, Microfluid. Nanofluid. 3, 245 (2007)

    Article  Google Scholar 

  5. M.J. Sparnaay, Surface Sci. 1, 213 (1964)

    Article  ADS  Google Scholar 

  6. M. Vallet, B. Berge, L. Vovelle, Polymer 37, 2465 (1996)

    Article  Google Scholar 

  7. W.J.J. Welters, L.G.J. Fokkink, Langmuir 14, 1535 (1998)

    Article  Google Scholar 

  8. M.A. Habib, J.O.M. Bockris, Comprehensive Treatise of Electrochemistry, Vol. 1, edited by J.O.M. Bockris, B.E. Conway, E.Yeager (Plenum Press, New York, 1980), p. 135

  9. M. Sato, N. Kudo, M. Saito, IEEE Trans. Ind. Appl. 34, 294 (1998)

    Article  Google Scholar 

  10. A. Bateni, A. Amirfazli, A.W. Neumann, Colloids Surf. A 289, 25 (2006)

    Article  Google Scholar 

  11. A. Quinn, R. Sedev, J. Ralston, J. Phys. Chem. B 107, 1163 (2003)

    Article  Google Scholar 

  12. M. Schneemilch, W.J.J. Welters, R.A. Hayes, J. Ralston, Langmuir 16, 2924 (2000)

    Article  Google Scholar 

  13. T.D. Blake, A. Clarke, E.H. Stattersfield, Langmuir 16, 2928 (2000)

    Article  Google Scholar 

  14. U.-C. Yi, C.-J.J. Kim, Micromech. Microeng. 16, 2053 (2006)

    Article  Google Scholar 

  15. A. Quinn, R. Sedev, J. Ralston, J. Phys. Chem. B 109, 6268 (2005)

    Article  Google Scholar 

  16. S. Berry, J. Kedzierski, B. Abedian, J. Colloid Interface Sci. 303, 517 (2006)

    Article  Google Scholar 

  17. J. Kedzierski, S. Berry, Langmuir 22, 5690 (2006)

    Article  Google Scholar 

  18. J. Berthier, P. Dubois, P. Clementz, P. Claustre, C. Peponnet, Y. Fouillet, Sens. Actuators A 134, 471 (2007)

    Article  Google Scholar 

  19. M. Paneru, C. Priest, R. Sedev, J. Ralston, J. Phys. Chem. C 114, 8383 (2010)

    Article  Google Scholar 

  20. M. Paneru, C., Priest, R. Sedev, J. Ralston, J. Am. Chem. Soc. 132, 8301 (2010)

    Article  Google Scholar 

  21. R.J. Good, J. Adhesion Sci. Technol. 6, 1269 (1992)

    Article  Google Scholar 

  22. Handbook of Chemistry and Physics, edited by D.R. Lide (CRC, Boca Raton, FL, 2009)

  23. R.J. Good, J. Colloid Interface Sci. 59, 398 (1977)

    Article  Google Scholar 

  24. T.B. Jones, Langmuir 18, 4437 (2002)

    Article  Google Scholar 

  25. T.B. Jones, J.D. Fowler, Y.S. Chang, C.-J. Kim, Langmuir 19, 7646 (2003)

    Article  Google Scholar 

  26. F. Mugele, Soft Matter 5, 3377 (2009)

    Article  ADS  Google Scholar 

  27. R. Digilov, Langmuir 16, 6719 (2000)

    Article  Google Scholar 

  28. B. Janocha, H. Bauser, C. Oehr, H. Brunner, W. Goepel, Langmuir 16, 3349 (2000)

    Article  Google Scholar 

  29. C. Decamps, J. De Coninck, Langmuir 16, 10150 (2000)

    Article  Google Scholar 

  30. C. Cuvaj, Am. J. Phys. 36, 909 (1968)

    Article  ADS  Google Scholar 

  31. H.J.J. Verheijen, M.W.J. Prins, Rev. Sci. Instr. 70, 3668 (1999)

    Article  ADS  Google Scholar 

  32. A.G. Banpurkar, K.P. Nichols, F. Mugele, Langmuir 24, 10549 (2008)

    Article  Google Scholar 

  33. A.G. Banpurkar, M.H.G. Duits, D. van den Ende, F. Mugele, Langmuir 25, 1245 (2009)

    Article  Google Scholar 

  34. A.W. Neumann, R.J. Good, Surface Colloid Sci. 11, 31 (1979)

    Google Scholar 

  35. A.W. Neumann, J.K. Spelt(eds.) Applied Surface Thermodynamics (Marcel Dekker, New York, NY, 1996)

  36. C.J. van Oss, Interfacial Forces in Aqueous Media, 2nd edition (Taylor & Francis, Boca Raton, FL, 2006)

  37. P.G. de Gennes, Rev. Modern Phys. 57, 827 (1985)

    Article  ADS  Google Scholar 

  38. J. Buehrle, S. Herminghaus, F. Mugele, Phys. Rev. Lett. 91, 086101/1 (2003)

    Article  ADS  Google Scholar 

  39. C. Scheid, P. Witomski, Math. Comp. Mod. 49, 647 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. T.D. Blake, Surfactant Sci. Ser. 49, 251 (1993)

    Google Scholar 

  41. P.G. de Gennes, Colloid Polym. Sci. 264, 463 (1986)

    Article  Google Scholar 

  42. J. De Coninck, T.D. Blake, Annu. Rev. Mater. Res. 38, 1 (2008)

    Article  ADS  Google Scholar 

  43. H.-J. Butt, R. Raiteri, Surface Characterization Methods, edited by A.J. Milling (Marcel Dekker, New York, 1999)

  44. B.V. Toshev, D. Platikanov, Colloids Surf. A 291, 177 (2006)

    Article  Google Scholar 

  45. N. Sato, Electrochemistry at Metal and Semiconductor Electrodes (Elsevier, Amsterdam, 1998)

  46. H.J.J. Verheijen, M.W.J. Prins, Langmuir 15, 6616 (1999)

    Article  Google Scholar 

  47. A.R. Blythe, Electrical Properties of Polymers (Cambridge University Press, Cambridge, 1979)

  48. P.W. Chudleigh, J. Appl. Phys. 47, 4475 (1976)

    Article  ADS  Google Scholar 

  49. T.J. Fabish, C.B. Duke, J. Appl. Phys. 48, 4256 (1977)

    Article  ADS  Google Scholar 

  50. N. Knorr, S. Rosselli, T. Miteva, G. Nelles, J. Appl. Phys. 105, 114111/1 (2009)

    Article  ADS  Google Scholar 

  51. J.S. Hong, S.H. Ko, K.H. Kang, I.S. Kang, Microfluid. Nanofluid. 5, 263 (2008)

    Article  Google Scholar 

  52. M. Vallet, M. Vallade, B. Berge, Eur. Phys. J. B 11, 583 (1999)

    Article  ADS  Google Scholar 

  53. E. Seyrat, R.A. Hayes, J. Appl. Phys. 90, 1383 (2001)

    Article  ADS  Google Scholar 

  54. A.G. Papathanasiou, A.G. Boudouvis, Appl. Phys. Lett. 86, 164102/1 (2005)

    Article  ADS  Google Scholar 

  55. A.G. Papathanasiou, A.T. Papaioannou, A.G. Boudouvis, J. Appl. Phys. 103, 034901/1 (2008)

    Article  ADS  Google Scholar 

  56. W. Freyland, Phys. Chem. Chem. Phys. 10, 923 (2008)

    Article  Google Scholar 

  57. R. Zimmermann, S. Dukhin, C. Werner, J. Phys. Chem. B 105, 8544 (2001)

    Article  Google Scholar 

  58. R.A. Van Wagenen, D.L. Coleman, R.N. King, P. Triolo, L. Brostrom, L.M. Smith, D.E. Gregonis, J.D. Andrade, J. Colloid Interface Sci. 84, 155 (1981)

    Article  Google Scholar 

  59. J.A. Cross, Electrostatics: Principles, Problems and Applications (Adam Hilger: Bristol, 1987)

  60. B. Shapiro, H. Moon, R.L. Garrell, C.-J., Kim, J. Appl. Phys. 93, 5794 (2003)

    Article  ADS  Google Scholar 

  61. C. Quilliet, B. Berge, Europhys. Lett. 60, 99 (2002)

    Article  ADS  Google Scholar 

  62. J.S. Kuo, P. Spicar-Mihalic, I. Rodriguez, D.T. Chiu, Langmuir 19, 250 (2003)

    Article  Google Scholar 

  63. V. Srinivasan, V.K. Pamula, R.B. Fair, Lab. Chip. 4, 310 (2004)

    Article  Google Scholar 

  64. A. Staicu, F. Mugele, Phys. Rev. Lett. 97, 167801/1 (2006)

    Article  ADS  Google Scholar 

  65. B. Sun, J. Heikenfeld, J. Micromech. Microeng. 18, 025027/1 (2008)

    ADS  Google Scholar 

  66. D.A. Antelmi, J.N. Connor, R.G. Horn, J. Phys. Chem. B 108, 1030 (2004)

    Article  Google Scholar 

  67. M. Paneru, PhD Thesis, University of South Australia, 2010

  68. F. Brochard-Wyart, P.G. de Gennes, Adv. Colloid Interface Sci. 39, 1 (1992)

    Article  Google Scholar 

  69. R. Fetzer, J. Ralston, J. Phys. Chem. C 113, 8888 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sedev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedev, R. Electrowetting: Electrocapillarity, saturation, and dynamics. Eur. Phys. J. Spec. Top. 197, 307 (2011). https://doi.org/10.1140/epjst/e2011-01473-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjst/e2011-01473-4

Keywords

Navigation