Skip to main content
Log in

Spontaneous flow created by active topological defects

  • Topical Review - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Topological defects are at the root of the large-scale organization of liquid crystals. In two-dimensional active nematics, two classes of topological defects of charges \(\pm 1/2\) are known to play a major role due to active stresses. Despite this importance, few analytical results have been obtained on the flow-field and active-stress patterns around active topological defects. Using the generic hydrodynamic theory of active systems, we investigate the flow and stress patterns around these topological defects in unbounded, two-dimensional active nematics. Under generic assumptions, we derive analytically the spontaneous velocity and stall force of self-advected defects in the presence of both shear and rotational viscosities. Applying our formalism to the dynamics of monolayers of elongated cells at confluence, we show that the non-conservation of cell number generically increases the self-advection velocity and could provide an explanation for their observed role in cellular extrusion and multilayering. We finally investigate numerically the influence of the Ericksen stress. Our work paves the way to a generic study of the role of topological defects in active nematics, and in particular in monolayers of elongated cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note that special care must be taken when matching the fields inside and outside the core, because normalizations have been done in these two instances using two different characteristic lengths, \( L = \sqrt{\eta / \xi }\) and \(\bar{L} = \sqrt{(\eta + \gamma /4)/ \xi }\), respectively.

References

  1. N.D. Mermin, The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Kleman, Points, Lines, and Walls (Magnetic Systems, and Various Ordered Media. J Wiley, In Liquid Crystals, 1983)

  3. O. Lehmann, Flüssigkristalle. Engelmann, (1904)

  4. M. Kleman, Defects in liquid crystals. Rep. Prog. Phys. 52, 555–654 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Oswald, P. Pieranski, Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments (CRC Press, Boca Raton, 2005)

    Book  Google Scholar 

  6. K. Harth, R. Stannarius, Topological point defects of liquid crystals in quasi-two-dimensional geometries. Front. Phys. 8, 112 (2020)

    Article  Google Scholar 

  7. F. Jülicher, K. Kruse, J. Prost, J.-F. Joanny, Active behavior of the Cytoskeleton. Phys. Rep. 449, 3–28 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013)

    Article  ADS  Google Scholar 

  9. L. Giomi, M.J. Bowick, X. Ma, M.C. Marchetti, Defect annihilation and proliferation in active nematics. Phys. Rev. Lett. 110, 228101 (2013)

    Article  ADS  Google Scholar 

  10. S.P. Thampi, R. Golestanian, J.M. Yeomans, Velocity correlations in an active nematic. Phys. Rev. Lett. 111, 118101 (2013)

    Article  ADS  Google Scholar 

  11. L.M. Pismen, Dynamics of defects in an active nematic layer. Phys. Rev. E 88, 050502 (2013)

    Article  ADS  Google Scholar 

  12. T. Elsdale, Parallel orientation of fibroblasts in vitro. Exp. Cell Res. 51, 439–450 (1968)

    Article  Google Scholar 

  13. R. Kemkemer, D. Kling, D. Kaufmann, H. Gruler, Elastic properties of nematoid arrangements formed by amoeboid cells. The Eur. Phys. J. E 1(2), 215 (2000)

    Article  Google Scholar 

  14. G. Duclos, C. Erlenkämper, J.-F. Joanny, P. Silberzan, Topological defects in confined populations of spindle-shaped cells. Nat. Phys. 13, 58–62 (2017)

    Article  Google Scholar 

  15. T.B. Saw, W. Xi, B. Ladoux, C.T. Lim, Biological tissues as active nematic liquid crystals. Adv. Mater. 30, 1802579 (2018)

    Article  Google Scholar 

  16. C. Blanch-Mercader, P. Guillamat, A. Roux, K. Kruse, Integer topological defects of cell monolayers - mechanics and flows. Phys. Rev. E 103, 012405 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Blanch-Mercader, P. Guillamat, A. Roux, K. Kruse, Quantifying material properties of cell monolayers by analyzing integer topological defects. Phys. Rev. Lett. 103, 028101 (2021)

    Article  ADS  Google Scholar 

  18. Y. Maroudas-Sacks, L. Garion, L. Shani-Zerbib, A. Livshits, E. Braun, K. Keren, Topological defects in the nematic order of actin fibres as organization centres of Hydra morphogenesis. Nat. Phys. 17, 251–259 (2021)

    Article  Google Scholar 

  19. L. Metselaar, J.M. Yeomans, A. Doostmohammadi, Topology and morphology of self-deforming active shells. Phys. Rev. Lett. 123, 208001 (2019)

    Article  ADS  Google Scholar 

  20. T.B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S. Thampi, Y. Toyama, P. Marcq, C.T. Lim, J.M. Yeomans, B. Ladoux, Topological defects in epithelia govern cell death and extrusion. Nature 544, 212–216 (2017)

    Article  ADS  Google Scholar 

  21. K. Kawaguchi, R. Kageyama, M. Sano, Topological defects control collective dynamics in neural progenitor cell cultures. Nature 545, 327–331 (2017)

    Article  ADS  Google Scholar 

  22. T. Sarkar, V. Yashunsky, L. Brézin, C. Blanch-Mercader, T. Aryaksama, M. Lacroix, T. Risler, J.-F. Joanny, P. Silberzan, “Crisscross multilayering of cell sheets,” bioRxiv, preprint, (2021)

  23. K. Copenhagen, R. Alert, N.S. Wingreen, J.W. Shaevitz, Topological defects promote layer formation in Myxococcus xanthus colonies. Nat. Phys. 17, 211–215 (2021)

    Article  Google Scholar 

  24. P.-G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford Science Publications, Oxford, 1974)

    Google Scholar 

  25. L. Giomi, M.J. Bowick, P. Mishra, R. Sknepnek, M.C. Marchetti, Defect dynamics in active nematics. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 372, 20130365 (2014)

    Article  ADS  Google Scholar 

  26. J. Rønning, M.C. Marchetti, M.J. Bowick, L. Angheluta, Flow around topological defects in active nematic films. Proc. Royal Soc. A Math. Phys. Eng. Sci. 478(2257), 20210879 (2022)

    ADS  MathSciNet  Google Scholar 

  27. G. Toth, C. Denniston, J.M. Yeomans, Hydrodynamics of topological defects in nematic liquid crystals. Phys. Rev. Lett. 88, 105504 (2002)

    Article  ADS  Google Scholar 

  28. K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. The Eur. Phys. J. E 16, 5–16 (2005)

    Article  Google Scholar 

  29. J.-F. Joanny, F. Jülicher, K. Kruse, J. Prost, Hydrodynamic theory for multi-component active polar gels. New J. Phys. 9, 422 (2007)

    Article  ADS  Google Scholar 

  30. J.-F. Joanny, J. Prost, Active gels as a description of the actin-myosin cytoskeleton. HFSP J. 3, 94–104 (2009)

    Article  Google Scholar 

  31. G. Duclos, S. Garcia, H.G. Yevick, P. Silberzan, Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10(14), 2346–2353 (2014)

    Article  ADS  Google Scholar 

  32. G. Duclos, C. Blanch-Mercader, V. Yashunsky, G. Salbreux, J.-F. Joanny, J. Prost, P. Silberzan, Spontaneous shear flow in confined cellular nematics. Nat. Phys. 14, 728–732 (2018)

    Article  Google Scholar 

  33. R. Alert, X. Trepat, Physical Models of Collective Cell Migration. Ann. Rev. Condens. Matter Phys. 11, 77–101 (2020)

    Article  Google Scholar 

  34. P.C. Martin, O. Parodi, P.S. Pershan, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A 6, 2401–2420 (1972)

    Article  ADS  Google Scholar 

  35. D. Forster, T.C. Lubensky, P.C. Martin, J. Swift, P.S. Pershan, Hydrodynamics of liquid crystals. Phys. Rev. Lett. 26, 1016–1019 (1971)

    Article  ADS  Google Scholar 

  36. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  37. F. Jülicher, S.W. Grill, G. Salbreux, Hydrodynamic theory of active matter. Rep. Prog. Phys. 81, 076601 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Abramowitz, I. Stegun, Handbook of Mathematical functions. National Bureau of Standards, Applied Mathematics Series - 55, (1964)

  39. A. Doostmohammadi, M.F. Adamer, S.P. Thampi, J.M. Yeomans, Stabilization of active matter by flow-vortex lattices and defect ordering. Nat. Commun. 7, 10557 (2016)

    Article  ADS  Google Scholar 

  40. S. Garcia, E. Hannezo, J. Elgeti, J.-F. Joanny, P. Silberzan, N.S. Gov, Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl. Acad. Sci. 112, 15314–15319 (2015)

    Article  ADS  Google Scholar 

  41. T. Elsdale, R. Foley, Morphogenetic aspects of multilayering in petri dish cultures of human fetal lung fibroblasts. J. Cell Biol. 41, 298–311 (1969)

    Article  Google Scholar 

  42. K. Thijssen, M.R. Nejad, J.M. Yeomans, Role of friction in multidefect ordering. Phys. Rev. Lett. 125, 218004 (2020)

    Article  ADS  Google Scholar 

  43. P.G. Saffman, M. Delbrück, Brownian motion in biological membranes. Proc. Natl. Acad. Sci. 72(8), 3111–3113 (1975)

    Article  ADS  Google Scholar 

  44. M. Basan, T. Risler, J.-F. Joanny, X. Sastre-Garau, J. Prost, Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 3, 265–272 (2009)

    Article  Google Scholar 

  45. M. Delarue, F. Montel, O. Caen, J. Elgeti, J.-M. Siaugue, D. Vignjevic, J. Prost, J.-F. Joanny, G. Cappello, Mechanical control of cell flow in multicellular spheroids. Phys. Rev. Lett. 110, 138103 (2013)

    Article  ADS  Google Scholar 

  46. F. Montel, M. Delarue, J. Elgeti, L. Malaquin, M. Basan, T. Risler, B. Cabane, D. Vignjevic, J. Prost, G. Cappello, J.-F. Joanny, Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 107, 188102 (2011)

    Article  ADS  Google Scholar 

  47. M. Delarue, F. Montel, D. Vignjevic, J. Prost, J.-F. Joanny, G. Cappello, Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys. J . 107, 1821–1828 (2014)

    Article  Google Scholar 

  48. F. Bowman, Introduction to Bessel Functions (Dover Publications Inc., USA, 1958)

    MATH  Google Scholar 

  49. R. Voituriez, J.-F. Joanny, J. Prost, Spontaneous flow transition in active polar gels. Europhys. Lett. (EPL) 70, 404–410 (2005)

    Article  ADS  Google Scholar 

  50. S.A. Edwards, J.M. Yeomans, Spontaneous flow states in active nematics: a unified picture. EPL (Europhys. Lett.) 85, 18008 (2009)

    Article  ADS  Google Scholar 

  51. L. Giomi, Geometry and topology of turbulence in active nematics. Phys. Rev. X 5, 031003 (2015)

    Google Scholar 

  52. A. Doostmohammadi, J. Ignés-Mullol, J.M. Yeomans, F. Sagués, Active nematics. Nat. Commun. 9, 3246 (2018)

    Article  ADS  Google Scholar 

  53. R. Zhang, N. Kumar, J.L. Ross, M.L. Gardel, J.J. de Pablo, Interplay of structure, elasticity, and dynamics in actin-based nematic materials. Proc. Natl. Acad. Sci. 115, E124–E133 (2018)

    Google Scholar 

  54. A. Joshi, E. Putzig, A. Baskaran, M.F. Hagan, The interplay between activity and filament flexibility determines the emergent properties of active nematics. Soft Matter 15(1), 94–101 (2019)

    Article  ADS  Google Scholar 

  55. S. Shankar, S. Ramaswamy, M.C. Marchetti, The low noise phase of a 2d active nematic. Phys. Rev. E 97, 012707 (2018)

    Article  ADS  Google Scholar 

  56. F. Vafa, L. Mahadevan, Active nematic defects and epithelial morphogenesis, arXiv:2105.01067, preprint, May (2021)

  57. L. A. Hoffmann, L. N. Carenza, J. Eckert, L. Giomi, Defect-mediated morphogenesis, arXiv:2105.15200, preprint, May (2021)

  58. R. Hartmann, P.K. Singh, P. Pearce, R. Mok, B. Song, F. Díaz-Pascual, J. Dunkel, K. Drescher, Emergence of three-dimensional order and structure in growing biofilms. Nat. Phys. 15, 251–256 (2019)

    Article  Google Scholar 

  59. M.R. Nejad, J.M. Yeomans, Active extensile stress promotes 3d director orientations and flows. Phys. Rev. Lett. 128, 048001 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Silberzan and T. Sarkar from Institut Curie for sharing their experimental results with us and useful discussions. LB received a PhD fellowship from the doctoral school Physique en Ile-de-France (EDPIF) and support by the Collège de France foundation and Institut Curie. This work received support from the grants ANR-11-LABX-0038, ANR-10-IDEX-0001-02.

Author information

Authors and Affiliations

Authors

Contributions

J-FJ conceived the project. J-FJ and TR directed the project. LB performed the analytical calculations and numerical integrations. LB produced the results and the figures. All three authors contributed to the development and interpretation of the theory. All three authors wrote the paper.

Corresponding author

Correspondence to Thomas Risler.

Appendices

Appendix A: Modified Bessel functions

1.1 Appendix A.1: Definition

The modified Bessel functions \(I_\alpha ,K_\alpha \) are the two general solutions of the following equation:

$$\begin{aligned} r^2 f''(r) + r f'(r) - (\alpha ^2+r^2) f(r) = 0\ . \end{aligned}$$
(A.1)

A related equation to the modified Bessel Eq. (A.1) is given by Bowman [48]:

$$\begin{aligned} r^2 f''(r) + (1-2a) r f'(r) - (b^2 c^2 r^{2c} - a^2 + d^2 c^2) f(r) = 0\ . \nonumber \\ \end{aligned}$$
(A.2)

Two independent solutions of Eq. (A.2) are \(r^a I_d(b r^c)\) and \(r^a K_d(b r^c)\).

1.2 Appendix A.2: Derivatives

The first-order derivatives of the modified Bessel functions are given by:

$$\begin{aligned} I_\alpha '(r)&= I_{\alpha -1}(r)-\frac{\alpha }{r}I_\alpha \end{aligned}$$
(A.3)
$$\begin{aligned} K_\alpha '(r)&= -\left( K_{\alpha -1}(r)+\frac{\alpha }{r}K_\alpha \right) \end{aligned}$$
(A.4)
$$\begin{aligned} I_0'(r)&= I_1(r) \end{aligned}$$
(A.5)
$$\begin{aligned} K_0'(r)&= -K_1(r) \end{aligned}$$
(A.6)

1.3 Appendix A.3: Asymptotic expansions

We also use the following asymptotic expansions:

$$\begin{aligned} I_\alpha (r)&\underset{r \rightarrow 0}{\simeq }\frac{1}{\Gamma (\alpha +1)}\left( \frac{r}{2} \right) ^\alpha \end{aligned}$$
(A.7)
$$\begin{aligned} K_\alpha (r)&\underset{r \rightarrow 0}{\simeq } {\left\{ \begin{array}{ll} \frac{\Gamma (\alpha )}{2} \left( \frac{2}{r} \right) ^\alpha \quad \text {if } \alpha >0 \\ -\ln (\frac{r}{2}) - \gamma \quad \text {if } \alpha =0 \end{array}\right. } \end{aligned}$$
(A.8)

where \(\gamma \) denotes here the Euler’s constant. At infinity, we use

$$\begin{aligned} I_\alpha (r)&\underset{r \rightarrow +\infty }{\simeq } \frac{e^r}{\sqrt{2\pi r}} \end{aligned}$$
(A.9)
$$\begin{aligned} K_\alpha (r)&\underset{r \rightarrow +\infty }{\simeq } \sqrt{\frac{\pi }{2r}} e^{-r} \end{aligned}$$
(A.10)

Appendix B: Velocity field

1.1 Appendix B.1: Limit of a vanishing rotational viscosity

This appendix is dedicated to the full computation of the velocity starting from Eq. (9). As justified in the main text, the stream function reads \(\tilde{\psi }({\tilde{r}},\theta ) = \tilde{\psi }({\tilde{r}}) \sin \theta \). Integrating one Laplace operator gives:

$$\begin{aligned} \Delta \tilde{\psi }({\tilde{r}},\theta ) - \tilde{\psi }({\tilde{r}},\theta ) = \left[ A {\tilde{r}} + \frac{B}{{\tilde{r}}} + s \right] \sin \theta \ , \end{aligned}$$
(B.11)

where A and B are integration constants. The radial dependence of the stream function then satisfies:

$$\begin{aligned} \frac{\!\mathrm {d}^2 \tilde{\psi }({\tilde{r}})}{\!\mathrm {d}{\tilde{r}}^2} + \frac{1}{\tilde{r}}\frac{\!\mathrm {d}\tilde{\psi }({\tilde{r}})}{\!\mathrm {d}{\tilde{r}}} - \left( 1+\frac{1}{{\tilde{r}}^2}\right) \tilde{\psi }({\tilde{r}}) = A {\tilde{r}} + \frac{B}{{\tilde{r}}} + s\ . \nonumber \\ \end{aligned}$$
(B.12)

The homogeneous solution \(\tilde{\psi }^0\) to this equation reads:

$$\begin{aligned} \tilde{\psi }^0({\tilde{r}}) = A_0 I_1({\tilde{r}}) + B_0 K_1({\tilde{r}})\ , \end{aligned}$$
(B.13)

where \(A_0\) and \(B_0\) are integration constants. The Wronskian associated with Eq. (B.12) reads

$$\begin{aligned} I_1({\tilde{r}}) K'_1({\tilde{r}}) - I'_1({\tilde{r}}) K_1({\tilde{r}}) = -\frac{1}{{\tilde{r}}}\ , \end{aligned}$$
(B.14)

which leads to:

$$\begin{aligned} {\tilde{\psi }}({\tilde{r}})&=\left\{ I_1({\tilde{r}})\left( A_0 - \int _{{\tilde{r}}}^{+\infty }{K_1(u)(Au^2 + su + B)\, \!\mathrm {d}u} \right) \right. \nonumber \\&+\left. K_1({\tilde{r}}) \left( B_0 - \int _0^{{\tilde{r}}}{I_1(u)(Au^2 + su + B)\, \!\mathrm {d}u} \right) \right\} \ . \end{aligned}$$
(B.15)

The velocity field \(\mathbf {{\tilde{v}}} = {\tilde{v}}_r({\tilde{r}}) \cos \theta \, \mathbf {e_r} + {\tilde{v}}_\theta ({\tilde{r}}) \sin \theta \, \mathbf {e_\theta }\) is obtained from the derivatives of the stream function: \({\tilde{v}}_r({\tilde{r}}) = {\tilde{\psi }}({\tilde{r}})/ {\tilde{r}}\) and \({\tilde{v}}_\theta ({\tilde{r}}) = -\!\mathrm {d}{\tilde{\psi }}({\tilde{r}})/\!\mathrm {d}{\tilde{r}}\). We obtain

$$\begin{aligned}&\tilde{v}_r({\tilde{r}}) = {\tilde{r}}^{-1} \left[ I_1({\tilde{r}}) \left( A_0 - \int _{{\tilde{r}}}^{+\infty }{K_1(u)(Au^2 + su + B)\, \!\mathrm {d}u} \right) \right. \nonumber \\&\quad +\left. K_1({\tilde{r}}) \left( B_0 - \int _0^{{\tilde{r}}}{I_1(u)(Au^2 + su + B)\, \!\mathrm {d}u} \right) \right] \end{aligned}$$
(B.16)
$$\begin{aligned}&\tilde{v}_\theta ({\tilde{r}}) =\! -\left[ \left( I_0(\tilde{r})\!-\frac{I_1({\tilde{r}})}{{\tilde{r}}} \right) \!\! \left( A_0 - \int _{\tilde{r}}^{+\infty }\!{K_1(u)(Au^2 + su + B)\, \!\mathrm {d}u}\! \right) \right. \nonumber \\&\quad -\left. \left( K_0({\tilde{r}}) + \frac{K_1(\tilde{r})}{{\tilde{r}}} \right) \left( B_0 - \int _0^{{\tilde{r}}}{I_1(u)(Au^2 + su + B)\, \!\mathrm {d}u} \right) \right] \ . \end{aligned}$$
(B.17)

Imposing a finite velocity at the origin leads to \(B_0 = 0\) and \(B=0\), as a finite velocity at infinity leads to \(A_0=0\). We then obtain \(\tilde{v}_r({\tilde{r}}=0)=-(A + s\pi /4)\) and \(\tilde{v}_\theta ({\tilde{r}}=0)= A + s\pi /4\) at the origin, and \(\tilde{v}_r({\tilde{r}}=\infty )= -A\) and \(\tilde{v}_\theta (\tilde{r}=\infty )= A\) at infinity. Imposing \({\tilde{v}}_r(0) = \tilde{v}_\theta (0) = 0\) yields \(A=-s\pi /4\), and imposing \({\tilde{v}}_r(\tilde{r}=\infty ) = -{\tilde{v}}_0\) and \({\tilde{v}}_\theta ({\tilde{r}}=\infty ) = {\tilde{v}}_0\) yields \(A = \tilde{v}_0\). Coming back to physical units, these lead to the self-advection velocity given by Eq. (11).

1.2 Appendix B.2: Velocity field with a finite rotational viscosity

We start the computation from Eq. (26) with the dependence \({\bar{\psi }}({\bar{r}},\theta ) = {\bar{\psi }}({\bar{r}}) \sin \theta \). Integrating one Laplace operator gives:

$$\begin{aligned} \frac{\!\mathrm {d}^2 {\bar{\psi }}(r)}{\!\mathrm {d}{\bar{r}}^2} + \frac{(1-\lambda )}{{\bar{r}}}\frac{\!\mathrm {d}{\bar{\psi }}(r)}{\!\mathrm {d}{\bar{r}}} - (1+\frac{1}{{\bar{r}}^2}) {\bar{\psi }} =A\,{\bar{r}} + \frac{B}{{\bar{r}}} + s \ . \nonumber \\ \end{aligned}$$
(B.18)

The left-hand side of this equation is of the form (A.2) with \(a = \lambda /2\), \(b=1\), \(c=1\), and \(d=\sqrt{1+\lambda ^2/4}\). Following Appendix A.1, two independent homogeneous solutions to Eq. (B.18) are \({\bar{r}}^{\lambda /2}I_{\alpha }({\bar{r}}),{\bar{r}}^{\lambda /2}K_{\alpha }({\bar{r}})\), with \(\alpha = \sqrt{1+\lambda ^2/4}\). Following a similar procedure as in Appendix B.1, the dimensionless velocity field has the form:

$$\begin{aligned} {\bar{v}}_r = {\bar{r}}^{\lambda /2-1}&\left\{ I_\alpha ({\bar{r}}) \left( A_0 - \int _{\bar{r}}^{+\infty }{u^{-\lambda /2}K_\alpha (u)(Au^2 + su + B)\, \!\mathrm {d}u}\right) \right. \nonumber \\&+\left. K_\alpha ({\bar{r}}) \left( B_0 - \int _0^{\bar{r}}{u^{-\lambda /2}I_\alpha (u)(Au^2 + su + B)\, \!\mathrm {d}u}\right) \right\} \nonumber \\&\times \cos \theta \end{aligned}$$
(B.19)
$$\begin{aligned} {\bar{v}}_\theta = {\bar{r}}^{\lambda /2}&\left\{ \left( \frac{\alpha - \lambda /2}{{\bar{r}}} I_\alpha ({\bar{r}}) - I_{\alpha -1}({\bar{r}}) \right) \times \right. \nonumber \\&\left. \quad \left( A_0 - \int _{\bar{r}}^{+\infty }{u^{-\lambda /2}K_\alpha (u)(Au^2 + su + B)\, \!\mathrm {d}u}\right) \right. \nonumber \\&+ \left. \left( \frac{\alpha - \lambda /2}{{\bar{r}}} K_\alpha ({\bar{r}}) + K_{\alpha -1}({\bar{r}})\right) \right. \nonumber \\&\left. \quad \times \left( B_0 - \int _0^{\bar{r}}{u^{-\lambda /2}I_\alpha (u)(Au^2 + s u + B)\, \!\mathrm {d}u}\right) \right\} \sin \theta \ . \end{aligned}$$
(B.20)

The boundary conditions still set \(A_0=0\), \(B_0=0\), \(B=0\), and \(A={\bar{v}}_0\), similar as in Appendix B.1. The asymptotic expansion of the velocity field close to the core reads:

$$\begin{aligned} {\bar{v}}_r({\bar{r}})&\underset{{\bar{r}}\ll 1}{\simeq } -\frac{2^{-\alpha }}{\Gamma (\alpha +1)}(sC_1^\lambda + {\bar{v}}_0 C_2^\lambda ) {\bar{r}}^{\lambda /2+\alpha -1} \end{aligned}$$
(B.21)
$$\begin{aligned} {\bar{v}}_\theta ({\bar{r}})&\underset{{\bar{r}}\ll 1}{\simeq } \frac{2^{-\alpha }(\lambda /2 + \alpha )}{\Gamma (\alpha +1)} (sC_1^\lambda + {\bar{v}}_0 C_2^\lambda ) {\bar{r}}^{\lambda /2+\alpha -1} \ , \end{aligned}$$
(B.22)

with

$$\begin{aligned} C_1^\lambda&= \int _0^\infty {\!\mathrm {d}u \, u^{1-\lambda /2} K_\alpha (u)}\nonumber \\&=2^{- \lambda /2}\Gamma \left[ 1-\frac{1}{2}\left( \alpha +\frac{\lambda }{2} \right) \right] \, \Gamma \left[ 1+\frac{1}{2}\left( \alpha - \frac{\lambda }{2} \right) \right] \end{aligned}$$
(B.23)
$$\begin{aligned} C_2^\lambda&= \int _0^\infty {\!\mathrm {d}u \, u^{2-\lambda /2} K_\alpha (u)}\nonumber \\&= 2^{1- \lambda /2}\Gamma \left[ \frac{1}{2}\left( 3 - \alpha - \frac{\lambda }{2} \right) \right] \, \Gamma \left[ \frac{1}{2}\left( 3 + \alpha - \frac{\lambda }{2} \right) \right] \ . \end{aligned}$$
(B.24)

Contrary to the case of a vanishing rotational viscosity, the velocity field in the defect reference frame vanishes close to the core for any finite value of \({\bar{v}}_0\), since the exponent \(\lambda /2+\alpha -1\) is positive. To set the value of \({\bar{v}}_0\), we must consider the tangential stress \(\sigma _{r \theta }\). Using the angular dependence of the stream function and force balance, its dimensionless version reads

$$\begin{aligned} {\bar{\sigma }}_{r \theta }({\bar{r}},\theta )= \left( 2\frac{\lambda - 1}{{\bar{r}}}(\bar{v}_\theta ({\bar{r}})+{\bar{v}}_r({\bar{r}})) - {\bar{r}} {\bar{v}}_r({\bar{r}}) - {\bar{v}}_0\,{\bar{r}} \right) \sin \theta \ . \end{aligned}$$
(B.25)

Since \(\lambda /2+\alpha -2\) is negative, \({\bar{v}}_0\) must equal \(-sC_1^\lambda /C_2^\lambda \) for this tangential stress to remain finite at the origin. This leads to Eq. (27) in physical units.

Appendix C: Stall force

1.1 Appendix C.1: Limit of vanishing rotational viscosity

In the limit of vanishing rotational viscosity, the stall force is determined by the velocity and pressure solutions to Eqs. (13) and (14), together with the incompressibility condition \(\nabla \cdot \mathbf {v}= 0\). Quantities defined inside the core \(r<a\) bear the superscript ‘c.’ Using the dimensionless units of Sect. 2, the stream function satisfies:

$$\begin{aligned} \Delta \left[ \Delta \tilde{\psi } - \tilde{\psi }\right]&= -s\frac{\sin \theta }{\tilde{r}^2} \qquad {\tilde{r}}>{\tilde{a}} \end{aligned}$$
(C.26)
$$\begin{aligned} \Delta \left[ \Delta \tilde{\psi }^\mathrm {c} - \tilde{\psi }^\mathrm {c}\right]&= -\tilde{f}\frac{\sin \theta }{\tilde{r}^2} \qquad {\tilde{r}}<{\tilde{a}}\ , \end{aligned}$$
(C.27)

with \({\tilde{a}}=a/L\) and \(\tilde{f} = f/(\pi a \zeta \Delta \mu )\) the normalized core radius and overall force applied to the core. The solution for the velocity field outside the core is given by Eqs. (B.16) and (B.17) with \(A_0=0\) and \(A=\tilde{v}_0\) as in Appendix B.1. The velocity field inside the core, however, reads:

$$\begin{aligned} \tilde{v}_r^\mathrm {c}({\tilde{r}})&= {\tilde{r}}^{-1} \left[ I_1(\tilde{r}) \left( A_0^\mathrm {c} + \int _{0}^{\tilde{r}}{K_1(u)(A^\mathrm {c}u^2 + \tilde{f} u + B^\mathrm {c})\, \!\mathrm {d}u} \right) \right. \nonumber \\&\qquad +\left. K_1({\tilde{r}}) \left( B^\mathrm {c}_0 - \int _0^{\tilde{r}}{I_1(u)(A^\mathrm {c}u^2 + \tilde{f}u + B^\mathrm {c})\, \!\mathrm {d}u} \right) \right] \end{aligned}$$
(C.28)
$$\begin{aligned} \tilde{v}^\mathrm {c}_\theta ({\tilde{r}})&= -\left[ \left( I_0({\tilde{r}})-\frac{I_1({\tilde{r}})}{{\tilde{r}}} \right) \times \right. \nonumber \\&\qquad \quad \left. \left( A^\mathrm {c}_0 + \int _{0}^{\tilde{r}}{K_1(u)(A^\mathrm {c}u^2 + \tilde{f} u + B^\mathrm {c})\, \!\mathrm {d}u} \right) \right. \nonumber \\&\quad - \left( K_0({\tilde{r}}) + \frac{K_1({\tilde{r}})}{{\tilde{r}}} \right) \times \nonumber \\&\qquad \quad \left. \left( B^\mathrm {c}_0 - \int _0^{\tilde{r}}{I_1(u)(A^\mathrm {c}u^2 + \tilde{f}u + B^\mathrm {c})\, \!\mathrm {d}u} \right) \right] \ . \end{aligned}$$
(C.29)

The boundary condition \(\mathbf {v}^\mathrm {c}({\tilde{r}}=0)=\mathbf {0}\) imposes that \(B^\mathrm {c}\), \(B^\mathrm {c}_0\), and \(A_0^\mathrm {c}\) vanish. The other integration constants are set by imposing the continuity of the velocity and stress fields at the boundary of the core \(r=a\). Introducing \(\tilde{P}\), the pressure normalized by \(|\zeta | \Delta \mu /2\) and taking the divergence of the force balance Eqs. (13) and (14), we obtain:

$$\begin{aligned} \Delta \tilde{P}&= s\frac{\cos \theta }{{\tilde{r}}^2}\qquad \tilde{r}>{\tilde{a}} \end{aligned}$$
(C.30)
$$\begin{aligned} \Delta \tilde{P}^\mathrm {c}&= \tilde{f}\frac{\cos \theta }{\tilde{r}^2}\qquad {\tilde{r}}<{\tilde{a}}\ . \end{aligned}$$
(C.31)

These equations are solved by:

$$\begin{aligned} \tilde{P} ({\tilde{r}},\theta )&= \left[ A_* {\tilde{r}} + \frac{B_*}{{\tilde{r}}} - s \right] \cos \theta \end{aligned}$$
(C.32)
$$\begin{aligned} \tilde{P}^\mathrm {c} (r,\theta )&= \left[ A_*^\mathrm {c} {\tilde{r}} + \frac{B_*^\mathrm {c}}{{\tilde{r}}} - \tilde{f}\right] \cos \theta \ , \end{aligned}$$
(C.33)

where \(A_*\), \(B_*\), \(A_*^\mathrm {c}\), and \(B_*^\mathrm {c}\) are integration constants. Pressure and velocity are linked by force balance, imposing

$$\begin{aligned} B_*&= B \end{aligned}$$
(C.34)
$$\begin{aligned} B_*^\mathrm {c}&= B^\mathrm {c} \end{aligned}$$
(C.35)
$$\begin{aligned} A_*&= 0 \end{aligned}$$
(C.36)
$$\begin{aligned} A_*^\mathrm {c}&= A^\mathrm {c} - \tilde{v}_0\ . \end{aligned}$$
(C.37)

The normal and tangential components of the stress read \(\sigma _{rr}=2\eta \partial _r v_r - P\) and \(\sigma _{r\theta }=\eta [(\partial _\theta v_r -v_\theta )/r + \partial _r v_\theta ]\), respectively. We impose the continuity of the velocity and stress fields at the boundary of the core in \(r=a\) in the limit of a small core size \({\tilde{a}}\ll 1\), in which case we can make use of the following asymptotic expressions:

$$\begin{aligned} \tilde{v}_r^\mathrm {c}({\tilde{r}})&\underset{{\tilde{r}}\ll 1}{\simeq } \frac{A^\mathrm {c}}{8} {\tilde{r}}^2 + \frac{{\tilde{f}}}{3} {\tilde{r}} \end{aligned}$$
(C.38)
$$\begin{aligned} \tilde{v}_r({\tilde{r}})&\underset{{\tilde{r}}\ll 1}{\simeq } -s\frac{C^0_1}{2}-\tilde{v}_0\frac{C^0_2}{2}+\frac{B_0}{\tilde{r}^2}+\frac{B}{2}\log {\tilde{r}} \end{aligned}$$
(C.39)
$$\begin{aligned} \tilde{v}_\theta ^\mathrm {c}({\tilde{r}})&\underset{{\tilde{r}}\ll 1}{\simeq } -\frac{3A^\mathrm {c}}{8} {\tilde{r}}^2 - \frac{2{\tilde{f}}}{3} {\tilde{r}} \end{aligned}$$
(C.40)
$$\begin{aligned} \tilde{v}_\theta ({\tilde{r}})&\underset{{\tilde{r}}\ll 1}{\simeq } s\frac{C^0_1}{2} + \tilde{v}_0\frac{C^0_2}{2}+\frac{B_0}{\tilde{r}^2}-\frac{B}{2}\log {\tilde{r}} \ , \end{aligned}$$
(C.41)

with \(C_1^0\) and \(C_2^0\) given, respectively, by eqs. (B.23) and (B.24) with \(\lambda =0\). Finally, we obtain the stall force by imposing \(\tilde{v}_0=0\). The result is given by Eq. (15), to leading order in \(\tilde{a}=a/L=a\sqrt{\xi /\eta }\).

1.2 Appendix C.2: Finite rotational viscosity

The procedure to determine the stall force with a finite rotational viscosity resembles that presented in Appendix C.1. Since we assume no nematic order within the core region, the fields inside the core are unchanged as compared with Appendix C.1. The pressure field outside the core does not depend on the rotational viscosity and is unchanged. The quantity that changes is the velocity field outside the core region, now given by Eqs. (B.21B.24). Close to the core, for \(\bar{a} < \bar{r} \ll 1\), the velocity components have the following asymptotic expressions:

$$\begin{aligned} \bar{v}_r(\bar{r}) \underset{\bar{r}\ll 1}{\simeq }&-\frac{2^{-\alpha }}{\Gamma (\alpha +1)}(s\,C^\lambda _1+{\bar{v}}_0 \, C^\lambda _2) \bar{r}^{\lambda /2+\alpha -1} \nonumber \\&+2^{\alpha -1}B_0 \Gamma (\alpha ) \bar{r}^{\lambda /2-\alpha -1} - \frac{B}{\lambda } \end{aligned}$$
(C.42)
$$\begin{aligned} \bar{v}_\theta (\bar{r}) \underset{\bar{r}\ll 1}{\simeq }&\frac{2^{-\alpha }(\lambda /2+\alpha )}{\Gamma (\alpha +1)}(s\,C^\lambda _1+{\bar{v}}_0 \, C^\lambda _2) \bar{r}^{\lambda /2+\alpha -1}\nonumber \\&+2^{\alpha -1}(\alpha -\lambda /2)B_0 \Gamma (\alpha ) \bar{r}^{\lambda /2-\alpha -1} + \frac{B}{\lambda }\ , \end{aligned}$$
(C.43)

with the notations of Appendix B.2. Using the expressions Eqs. (C.32), (C.33), (C.38), (C.40), (C.42), and (C.43), continuity at the core boundary leads to the stalling force given by Eq. (29) for \({\bar{v}}_0=0\)Footnote 1.

Appendix D: Cell division/extrusion

In Sect. 2.3, we introduce the Helmholtz decomposition \(\mathbf {v} = \mathbf {\nabla } \times (\psi \ \mathbf {e}_z)+\mathbf {\nabla } \phi \). In dimensionless units, \({\tilde{\phi }}\) satisfies Eq. (20), which is solved by:

$$\begin{aligned} {\tilde{\phi }}({\tilde{r}})&=\left\{ I_1\left( \frac{\tilde{r}}{\delta }\right) \left( A^0_\phi - \int _{\tilde{r}/\delta }^{+\infty }{K_1(u)(A_\phi u^2 + su + B_\phi )\, \!\mathrm {d}u} \right) \right. \nonumber \\&+\left. K_1\left( \frac{{\tilde{r}}}{\delta }\right) \left( B^0_\phi - \int _0^{{\tilde{r}}/\delta }{I_1(u)(A_\phi u^2 + su + B_\phi )\, \!\mathrm {d}u} \right) \right\} \,, \end{aligned}$$
(D.44)

where \(\delta =\sqrt{(\eta +\kappa )/\eta }\). The velocity then reads:

$$\begin{aligned} \tilde{v}_r({\tilde{r}})&= \left( \frac{\tilde{\psi }(\tilde{r})}{\tilde{r}} + \frac{\!\mathrm {d}\phi (\tilde{r})}{\!\mathrm {d}\tilde{r}}\right) \cos \theta \end{aligned}$$
(D.45)
$$\begin{aligned} \tilde{v}_\theta ({\tilde{r}})&= -\left( \frac{\!\mathrm {d}{\tilde{\psi }}(\tilde{r})}{\!\mathrm {d}\tilde{r}} + \frac{\tilde{\phi }(\tilde{r})}{{\tilde{r}}}\right) \sin \theta \ , \end{aligned}$$
(D.46)

where \({\tilde{\psi }}\) is given by Eq. (B.15) as in Appendix B.1. The force balance condition (8) then imposes:

$$\begin{aligned} B&= \frac{B_\phi }{\delta } \end{aligned}$$
(D.47)
$$\begin{aligned} A&+ \frac{A_\phi }{\delta } = \tilde{v}_0\ . \end{aligned}$$
(D.48)

Imposing that the divergence of the velocity field—or equivalently the proliferation rate k—does not diverge at the core nor at infinity, we find that \(A^0_\phi \), \(A_0\), \(B^0_\phi \), \(B_0\), B, and \(B_\phi \) must all vanish. At the center of the defect \({\tilde{r}} =0\), the components of velocity then read \(\tilde{v}_r({\tilde{r}} = 0) = -(\tilde{v}_0 + s (\pi /4)(1+1/\delta ))\) and \(\tilde{v}_\theta ({\tilde{r}} = 0) = \tilde{v}_0 + s (\pi /4)(1+1/\delta )\). Imposing \(\tilde{\mathbf {v}}({\tilde{r}} = 0) = \mathbf {0}\) in the reference frame of the default yields the self-advection velocity given by Eq. (21).

The divergence of the velocity field is then given by:

$$\begin{aligned} \nabla \cdot \tilde{\mathbf {v}} = -\frac{s}{\delta ^2}&\left[ I_1\left( \frac{{\tilde{r}}}{\delta }\right) \int _{{\tilde{r}}/\delta }^{+\infty }{K_1(u)\, u \, \!\mathrm {d}u} \right. \nonumber \\&\left. + K_1\left( \frac{{\tilde{r}}}{\delta }\right) \int _0^{\tilde{r}/\delta }{I_1(u)\,u\, \!\mathrm {d}u} -1\right] \cos \theta \ . \end{aligned}$$
(D.49)

It is represented in Fig. 3.

Appendix E: -1/2 defects

1.1 Appendix E.1: Velocity field

This appendix is dedicated to the computation of the velocity field around a \(-1/2\) defect, plotted in Fig. 2. We add the superscript ‘-’ to denote the quantities associated with a \(-1/2\) defect. Force balance reads:

$$\begin{aligned} \eta \Delta \mathbf {v}^-&- \mathbf {\nabla } P^- - \xi \mathbf {v}^- \nonumber \\&-\frac{\zeta \Delta \mu }{2r} \left( -\cos (3\theta )\, \mathbf {e}_r + \sin (3\theta )\, \mathbf {e}_\theta \right) = \mathbf {0} \ . \nonumber \\ \end{aligned}$$
(E.50)

Here the defect is immotile, such that the velocity field satisfies:

$$\begin{aligned} \mathbf {v}^-(+\infty ,\theta )&= \mathbf {0} \end{aligned}$$
(E.51)
$$\begin{aligned} \mathbf {v}^-(0,\theta )&= \mathbf {0} \ . \end{aligned}$$
(E.52)

The curl of Eq. (E.50) gives:

$$\begin{aligned} \Delta \left[ \eta \Delta \psi ^- - \xi \psi ^- \right] = \frac{3}{2}\zeta \Delta \mu \frac{\sin 3\theta }{r^2} \ . \end{aligned}$$
(E.53)

Using a normalization by a characteristic length \(L=\sqrt{\eta /\xi }\) and a characteristic time \(\tau ^- = 2\eta /(3|\zeta | \Delta \mu )\), we introduce the dimensionless stream function \({\tilde{\psi }}^- = (\tau ^-/L^2) \psi ^-\) and spatial variable \({\tilde{r}} = r/L\). We then have:

$$\begin{aligned} \Delta \left[ \Delta {\tilde{\psi }}^- - {\tilde{\psi }}^- \right] = s\frac{\sin 3\theta }{r^2}\ , \end{aligned}$$
(E.54)

where \(s=\text {sign}(\zeta )\) and \(\psi ^-\) is of the form \(\tilde{\psi }^-({\tilde{r}},\theta ) = {\tilde{\psi }}^-({\tilde{r}}) \sin 3 \theta \). Integrating one Laplace operator in this equation leads to:

$$\begin{aligned} \frac{\!\mathrm {d}^2 {\tilde{\psi }}^-({\tilde{r}})}{\!\mathrm {d}{\tilde{r}}^2} + \frac{1}{{\tilde{r}}}\frac{\!\mathrm {d}{\tilde{\psi }}^-({\tilde{r}})}{\!\mathrm {d}\tilde{r}} - \left( 1+\frac{3}{{\tilde{r}}^2}\right) {\tilde{\psi }}^-({\tilde{r}}) = A^- {\tilde{r}} + \frac{B^-}{{\tilde{r}}} - s \ . \nonumber \\ \end{aligned}$$
(E.55)

Solving this equation leads to the following dimensionless velocity field:

$$\begin{aligned} {\tilde{v}}_r^- = s&\left\{ I_3({\tilde{r}}) \int _{{\tilde{r}}}^{+\infty }{ K_3(u) u \, \mathrm {d}u}\right. \nonumber \\&+\left. K_3({\tilde{r}}) \int _0^{{\tilde{r}}}{ I_3(u)u\, \mathrm {d}u} \right\} \cos 3\theta \end{aligned}$$
(E.56)
$$\begin{aligned} {\tilde{v}}_\theta ^- = s&\left\{ \left( \frac{3}{{\tilde{r}}}I_3(\tilde{r})-I_2({\tilde{r}}) \right) \int _{{\tilde{r}}}^{+\infty }{ K_3(u) u \, \mathrm {d}u}\right. \nonumber \\&+\left. \left( \frac{3}{{\tilde{r}}}K_3({\tilde{r}})+K_2({\tilde{r}}) \right) \int _0^{{\tilde{r}}}{ I_3(u)u\, \mathrm {d}u} \right\} \sin 3\theta \ , \end{aligned}$$
(E.57)

accounting for the boundary conditions Eqs. (E.51) and (E.52). This velocity field is plotted in Fig. 2b, d.

The pressure field \(P^-\) is obtained by taking the divergence of Eq. (E.50):

$$\begin{aligned} \Delta P^- = \frac{3 \zeta \Delta \mu }{2r^2}\cos 3\theta \ , \end{aligned}$$
(E.58)

which yields, with the boundary conditions (E.51)–(E.52):

$$\begin{aligned} P^-(r,\theta ) = -\frac{3 \zeta \Delta \mu }{2}\cos 3\theta \ . \end{aligned}$$
(E.59)

1.2 Appendix E.2: Cell division/extrusion

We derive in this section the divergence of the velocity field represented in Fig. 3. The derivation resembles that for +1/2 defects as presented in Sect. 2.3 with a pressure-dependent proliferation rate given by Eq. (18). The velocity field is decomposed into \(\mathbf {v}^- = \mathbf {\nabla } \times (\psi ^-\ \mathbf {e}_z)+\mathbf {\nabla } \phi ^-\). The divergence-free and curl-free parts of the velocity, respectively, satisfy:

$$\begin{aligned} \Delta \left[ \Delta \tilde{\psi }^- - \tilde{\psi }^-\right]&= s\frac{\sin 3\theta }{\tilde{r}^2} \end{aligned}$$
(E.60)
$$\begin{aligned} \Delta \left[ \Delta \tilde{\phi }^- - \frac{1}{\delta ^2}\tilde{\phi }^- \right]&= s\frac{\cos {3\theta }}{\delta ^2 \tilde{r}^2} \ . \end{aligned}$$
(E.61)

Solving Eq. (E.61), we get the divergence profile of the velocity field represented in Fig. 3b,d as:

$$\begin{aligned} \nabla \cdot \tilde{\mathbf {v}}^- = \frac{s}{\delta ^2}&\left[ I_3\left( \frac{{\tilde{r}}}{\delta }\right) \int _{{\tilde{r}}/\delta }^{+\infty }{K_3(u)\, u \, \!\mathrm {d}u} \right. \nonumber \\&\left. + K_3\left( \frac{{\tilde{r}}}{\delta }\right) \int _0^{\tilde{r}/\delta }{I_3(u)\,u\, \!\mathrm {d}u}-1\right] \cos 3\theta \ . \end{aligned}$$
(E.62)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brézin, L., Risler, T. & Joanny, JF. Spontaneous flow created by active topological defects. Eur. Phys. J. E 45, 30 (2022). https://doi.org/10.1140/epje/s10189-022-00186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00186-2

Navigation