Skip to main content
Log in

Simulation studies of the behavior of positrons in a microtrap with long aspect ratio

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The storage capacity of positrons in micro-Penning-Malmberg traps with large length to radius aspect ratios and radii of tens of microns was explored. Simulation studies were conducted with the WARP code and Charged Particle Optics program. A new design of the Penning-Malmberg trap consisting of an array of microtraps with substantially lower end electrode potential than conventional traps was considered. Simulations demonstrated each microtrap with 50 μm radius immersed in a 7T uniform magnetic field could store positrons indefinitely with a density of 1.6 × 1011cm-3 while the confinement voltage was only 10V. For microtraps with radii between 100 μm and 3 μm, the particle density scaled as r -2. Charge clouds developed the expected radial density distribution (that of a soft edge) and rigid rotation evolved to some extent. Plasma confinement time was independent of trap length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Cassidy, A.P. Mills, Nature 449, 195 (2007)

    Article  ADS  Google Scholar 

  2. R.G. Greaves, C.M. Surko, AIP Conf. Proc. 606, 10 (2002)

    Article  ADS  Google Scholar 

  3. M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M.J.T. Collier, M. Doser, V. Filippini, K.S. Fine, A. Fontana, M.C. Fujiwara, R. Funakoshi, P. Genova, J.S. Hangst, R.S. Hayano, M.H. Holzscheiter, L.V. Jorgensen, V. Lagomarsino, R. Landua, D. Lindelof, E. Lodi Rizzini, M. Macri, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T.L. Watson, D.P. van der Werf, Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  4. G.B. Andresen, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, E. Butler, C.L. Cesar, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M.C. Fujiwara, D.R. Gill, A. Gutierrez, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, A.J. Humphries, R. Hydomako, S. Jonsell, S.L. Kemp, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, E. Sarid, D.M. Silveira, C. So, J.W. Storey, R.I. Thompson, D.P. van der Werf, J.S. Wurtele, Y. Yamazaki, Nat. Phys. 7, 558 (2011)

    Article  Google Scholar 

  5. M.H. Holzscheiter, M. Charlton, M.M. Nieto, Phys. Rep. 402, 1 (2004)

    Article  ADS  Google Scholar 

  6. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988)

    Article  ADS  Google Scholar 

  7. R.C. Davidson, Theory of Nonneutral Plasmas (Addison- Wesley, Reading, Massachusetts, 1989)

  8. F.M. Penning, Physica 3, 873 (1936)

    Article  ADS  Google Scholar 

  9. J.H. Malmberg, C.F. Driscoll, Phys. Rev. Lett. 44, 654 (1980)

    Article  ADS  Google Scholar 

  10. D.L. Eggleston, Phys. Plasmas 4, 1196 (1997)

    Article  ADS  Google Scholar 

  11. K.G. Lynn, R.G. Greaves, Private communication (2001)

  12. C.M. Surko, R.G. Greaves, Radiat. Phys. Chem. 68, 419 (2003)

    Article  ADS  Google Scholar 

  13. L. Brillouin, Phys. Rev. 67, 260 (1945)

    Article  ADS  Google Scholar 

  14. D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  15. R.C. Davidson, Physics of Non-neutral Plasmas (Addison-Wesley, Redwood City, 1990)

  16. E.M. Hollmann, F. Anderegg, C.F. Driscoll, Phys. Plasmas 7, 2776 (2000)

    Article  ADS  Google Scholar 

  17. J.R. Danielson, T.R. Weber, C.M. Surko, Phys. Plasmas 13, 123502 (2006)

    Article  ADS  Google Scholar 

  18. R.G. Greaves, C.M. Surko, Phys. Rev. Lett. 85, 1883 (2000)

    Article  ADS  Google Scholar 

  19. G.B. Andresen et al., Nat. Phys. 7, 558 (2011)

    Article  Google Scholar 

  20. C.F. Driscoll, K.S. Fine, J.H. Malmberg, Phys. Fluids 29, 2015 (1986)

    Article  ADS  Google Scholar 

  21. J.M. Kriesel, C.F. Driscoll, Phys. Rev. Lett. 85, 2510 (2000)

    Article  ADS  Google Scholar 

  22. A. Khamehchi, C.J. Baker, M.H. Weber, K.G. Lynn, Phys. Plasmas 21, 012512 (2014)

    Article  ADS  Google Scholar 

  23. W. Stoeffl, P. Asoka-Kumar, R. Howell, Appl. Surf. Sci. 149, 1 (1999)

    Article  ADS  Google Scholar 

  24. M.A. Khamehchi, A. Narimannezhad, M.H. Weber, K.G. Lynn, arXiv:1410.3543 (2014)

  25. T. Mortensen, A. Deller, C.A. Isaac, D.P. van der Werf, M. Charlton, J.R. Machacek, Phys. Plasmas 20, 012124 (2013)

    Article  ADS  Google Scholar 

  26. D.P. Grote, WARP manual (2000)

  27. CPO Users Guide www.electronoptics.com

  28. R. Courant, K. Friedrichs, H. Lewyt, IBM J. Res. Dev. 11, 215 (1967)

    Article  ADS  MATH  Google Scholar 

  29. K. Gomberoff, J. Wurtele, A. Friedman, D.P. Grote, J.-L. Vay. J. Comput. Phys. 225, 1736 (2007)

    Article  ADS  MATH  Google Scholar 

  30. C.J. Baker, J. Jennings, A. Verma, J. Xu, M.H. Weber, K.G. Lynn. Eur. Phys. J. D 66, 109 (2012)

    Article  ADS  Google Scholar 

  31. A. Narimannezhad, C.J. Baker, M.H. Weber, J. Xu, K.G. Lynn, arXiv:1301.0030 (2013)

  32. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (Institute of Physics Publishing, Bristol, 2002)

  33. S. Ichimaru, T. Tange, J. Phys. Soc. Jpn 36, 603 (1974)

    Article  ADS  Google Scholar 

  34. C.F. Driscoll, J.H. Malmberg, K.S. Fine, Phys. Rev. Lett. 60, 1290 (1988)

    Article  ADS  Google Scholar 

  35. A.W. Hyatt, C.F. Driscoll, J.H. Malmberg, Phys. Rev. Lett. 59, 2975 (1987)

    Article  ADS  Google Scholar 

  36. T.M. O’Neil, C.F. Driscoll, Phys. Fluids 22, 266 (1979)

    Article  ADS  MATH  Google Scholar 

  37. T.M. O’Neil, Phys. Fluids 23, 2216 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. R.H. Cohen, A. Friedman, M. Kireeff Covo, S.M. Lund, A.W. Molvik, Phys. Plasmas 12, 056708 (2005)

    Article  ADS  Google Scholar 

  39. R.H. Cohen, A. Friedman, D.P. Grote, J.-L. Vay Nucl. Instrum. Methods A 557, 52 (2007)

    Article  ADS  Google Scholar 

  40. D.H.E. Dubin, Phys. Plasmas 5, 1688 (1998)

    Article  ADS  Google Scholar 

  41. C.F. Driscoll, J.H. Malmberg, Phys. Rev. Lett. 50, 167 (1983)

    Article  ADS  Google Scholar 

  42. A. Narimannezhad, J. Jennings, M.H. Weber, K.G. Lynn, in IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014, p. 453

  43. J.F. Jia, K. Inoue, Y. Hasegawa, W.S. Yang, T. Sakurai, Phys. Rev. B 58, 1193 (1998)

    Article  ADS  Google Scholar 

  44. A. Narimannezhad, J. Jennings, M.H. Weber, K.G. Lynn, Micro Nano Lett. 9, 630 (2014)

    Article  Google Scholar 

  45. J.B. Camp, T.W. Darling, R.E. Brown, J. Appl. Phys. 69, 7126 (1991)

    Article  ADS  Google Scholar 

  46. T.R. Weber, J.R. Danielson, C.M. Surko, AIP Conf. Proc. 1114, 171 (2009)

    Article  ADS  Google Scholar 

  47. A. Narimannezhad, J. Jennings, M.H. Weber, K.G. Lynn, arXiv:1307.2335 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Narimannezhad or Kelvin G. Lynn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narimannezhad, A., Baker, C., Weber, M. et al. Simulation studies of the behavior of positrons in a microtrap with long aspect ratio. Eur. Phys. J. D 68, 351 (2014). https://doi.org/10.1140/epjd/e2014-40700-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40700-0

Keywords

Navigation