Skip to main content

Generation and Active Control of Coherent Structures in Partially-Neutralized Magnetized Plasmas

  • Conference paper
  • First Online:
Toward a Science Campus in Milan (CDIP 2017)

Abstract

Penning-Malmberg (electro-magnetostatic) traps represent a great laboratory for the investigation of collective phenomena in plasmas and fluids, e.g., two-dimensional fluid dynamics and turbulence. As such they are usually exploited to trap single-species plasmas, which facilitates the diagnostics and manipulation of their dynamics as well as equilibrium states. Yet in some of the most advanced and challenging applications, such as sympathetic cooling, formation of ordered structures (crystals) or neutral antimatter, simultaneous confinement of multiple species, possibly with opposite sign of charge, is required, which complicates the plasma evolution and enhances instability mechanisms. We review a collection of experimental investigations focusing on the generation of an electron plasma by means of a radio-frequency (RF) electric field. The in-trap generation scheme also implies the presence of positive ions, and the complex dynamics of the two plasma components in the presence of a relatively strong RF drive gives rise to a wealth of new features with respect to single-species plasmas, most notably non-trivial equilibrium states coming out of the insurgence of long-lived coherent structures, or unexpected response to conventional excitation and manipulation schemes. These properties may be used to the aim of an active control of the electron sample positioning and charge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.G. Dehmelt, F.L. Walls, Phys. Rev. Lett. 21, 127 (1968)

    Article  ADS  Google Scholar 

  2. J. DiSciacca, M. Marshall, G. Gabrielse, S. Ettenauer, E. Tardiff, R. Kalra, D.W. Fitzakerley, M.C. George, E.A. Hessels, C.H. Storry, M. Weel, D. Grzonka, W. Oelert, T. Sefzick, Phys. Rev. Lett. 110, 130801 (2013)

    Article  ADS  Google Scholar 

  3. G. Bettega, R. Pozzoli, M. Romé, New J. Phys. 11, 053006 (2009)

    Article  ADS  Google Scholar 

  4. J.H. Malmberg, J.S. deGrassie, Phys. Rev. Lett. 35, 577 (1975)

    Google Scholar 

  5. G.B. Andresen, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, E. Butler, C.L. Cesar, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M.C. Fujiwara, D.R. Gill, A. Gutierrez, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, A.J. Humpries, R. Hydomako, S. Jonsell, S.L. Kemp, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, A. Pusa, C.O. Rasmussen, F. Robicheaux, E. Sarid, D.M. Silveira, C. So, J.W. Storey, R.I. Thomson, D.P. van der Werf, J.S. Wurtele, Y. Yamazaki, Nature Phys. 7, 558 (2011)

    Google Scholar 

  6. M. Amoretti, G. Bettega, F. Cavaliere, M. Cavenago, F. De Luca, R. Pozzoli, M. Romé, Rev. Sci. Instrum. 74(9), 3991 (2003)

    Article  ADS  Google Scholar 

  7. G. Maero, S. Chen, R. Pozzoli, M. Romé, J. Plasma Phys. 81, 495810503 (2015)

    Article  Google Scholar 

  8. M. Maggiore, M. Cavenago, M. Comunian, F. Chirulotto, A. Galatà, M. De Lazzari, A.M. Porcellato, C. Roncolato, S. Stark, A. Caruso, A. Longhitano, F. Cavaliere, G. Maero, B. Paroli, R. Pozzoli, M. Romé, Rev. Sci. Instrum. 85, 02B909 (2014)

    Article  Google Scholar 

  9. M.A. Lieberman, V.A. Godyak, I.E.E.E. Trans, Plasma Sci. 26, 955 (1998)

    Article  Google Scholar 

  10. J.L. Mateos, Phys. Lett. A 256, 113 (1999)

    Article  ADS  Google Scholar 

  11. B. Paroli, F. De Luca, G. Maero, R. Pozzoli, M. Romé, Plasma Sources Sci. Technol. 19, 045013 (2010)

    Article  ADS  Google Scholar 

  12. G. Maero, R. Pozzoli, M. Romé, S. Chen, M. Ikram, JINST 11, C09007 (2016)

    Article  Google Scholar 

  13. A.A. Kabantsev, C.F. Driscoll, Fus. Sci. Technol. 51, 96 (2007)

    Article  Google Scholar 

  14. G. Maero, Il Nuovo Cimento C 40, 90 (2017)

    ADS  Google Scholar 

  15. G. Maero, S. Chen, R. Pozzoli, M. Romé, A.I.P. Conf. Proc. 1928, 020009 (2018)

    Google Scholar 

  16. R.C. Davidson, An Introduction to the Physics of Nonneutral Plasmas. (Addison-Wesley Publishing Company, 1990)

    Google Scholar 

  17. S. Chen, G. Maero, M. Romé, J. Plasma Phys. 81, 495810511 (2015)

    Article  Google Scholar 

  18. M. Romé, S. Chen, G. Maero, Plasma Phys. Control Fusion 59, 014036 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The studies presented in this paper benefited from the financial contributions received in the framework of the projects ‘COOLBEAM’ and ‘PLASMA4BEAM’ (INFN Group V) and through the UNIMI funding Linea 2-Azione A 2014–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Maero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maero, G. et al. (2018). Generation and Active Control of Coherent Structures in Partially-Neutralized Magnetized Plasmas. In: Bortignon, P., Lodato, G., Meroni, E., Paris, M., Perini, L., Vicini, A. (eds) Toward a Science Campus in Milan. CDIP 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-01629-6_14

Download citation

Publish with us

Policies and ethics