Skip to main content
Log in

Mathematical Model for the Separation of an Elliptically Polarized Wave in Anisotropic Photonic Crystals into TE- and TM-Waves

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A one-dimensional anisotropic photonic crystal is considered. A mathematical model is constructed that separates an elliptical polarization wave into TE- and TM-type waves. The transformation matrix is found for a periodic structure with an arbitrary number of layers in a period in the form of a block diagonal matrix. The transformation matrix is found for an arbitrary number of periods of the structure with anisotropic layers. Dispersion relations are found that determine the boundaries of the allowed zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Yablonovitch, Phys. Rev. Lett., No. 58, 2059 (1987).

  2. Z. V. Vardeny, A. Nahata, and A. Agrawal, Nat. Photonics 7, 177 (2013).

    Article  Google Scholar 

  3. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).

    Article  Google Scholar 

  4. S. Mingaleev and Y. Kivshar, Optics Photonics News 13 (7), 48 (2002).

    Article  Google Scholar 

  5. O. Jedrkiewicz, A. Gatti, E. Brambilla, et al., Eur. Conf. on Lasers and Electro-Optics (CLEO Europe), Munich, Jun. 25–29, 2017 (IEEE, New Yune, 2017).

  6. T. Zhan, X. Shi, Yu. Dai, et al., J. Phys. Condens. Matter 25, 215301 (2013).

    Article  Google Scholar 

  7. K. A. Vytovtov and Yu. S. Tarasenko, J. Opt. Soc. Am. A 24, 3564 (2007).

    Article  Google Scholar 

  8. K. Vytovtov, J. Opt. Soc. Am. A 22, 689 (2005).

    Article  Google Scholar 

  9. K. A. Vytovtov, J. Commun. Technol. Electron. 462, 144 (2001).

    Google Scholar 

  10. N. C. Passler and A. Paarmann, J. Opt. Soc. Am. 34, 2128 (2017).

    Article  Google Scholar 

  11. F. R. Gantmacher, The Theory of Matrices (Nauka, Moscow, 1962; Chelsea, New York, 1959).

  12. F. Abeles, Ann. Physique 5, 596 (1950).

    Article  MathSciNet  Google Scholar 

  13. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964; Nauka, Moscow, 1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Vytovtov.

Additional information

The study was presented at the Third International Youth Conference “Information and Communication Technologies: Modern Achievements” (Astrakhan, October 1–5, 2019).

APPENDIX

APPENDIX

The transformation matrix of a TE-wave [7] has the form

$${\mathbf{M}}\left( z \right) = \left| {\begin{array}{*{20}{c}} { - \frac{{\sqrt {{{\chi }_{2}}{{\gamma }_{1}}} \exp \left( {j{{k}_{1}}z} \right) - \sqrt {{{\chi }_{1}}{{\gamma }_{2}}} \exp \left( {j{{k}_{2}}z} \right)}}{{\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} - \sqrt {{{\chi }_{2}}{{\gamma }_{1}}} }}}&{\sqrt {{{\gamma }_{1}}{{\gamma }_{2}}} \frac{{\exp \left( {j{{k}_{1}}z} \right) - \exp \left( {j{{k}_{2}}z} \right)}}{{\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} - \sqrt {{{\chi }_{2}}{{\gamma }_{1}}} }}} \\ { - \sqrt {{{\chi }_{1}}{{\chi }_{2}}} \frac{{\exp \left( {j{{k}_{1}}z} \right) - \exp \left( {j{{k}_{2}}z} \right)}}{{\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} - \sqrt {{{\chi }_{2}}{{\gamma }_{1}}} }}}&{\frac{{\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} \exp \left( {j{{k}_{1}}z} \right) - \sqrt {{{\chi }_{2}}{{\gamma }_{1}}} \exp \left( {j{{k}_{2}}z} \right)}}{{\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} - \sqrt {{{\chi }_{2}}{{\gamma }_{1}}} }}} \end{array}} \right|,$$
(A1)

where

$$\begin{gathered} {{\gamma }_{1}} = \frac{{{{a}_{{11}}}{{\xi }_{2}} + {{a}_{{12}}}{{\zeta }_{1}}{{\xi }_{2}} - {{a}_{{21}}} - {{a}_{{22}}}{{\zeta }_{1}}}}{{{{\xi }_{2}} - {{\xi }_{1}}}}, \\ {{\gamma }_{2}} = \frac{{{{a}_{{11}}}{{\xi }_{1}} + {{a}_{{12}}}{{\zeta }_{2}}{{\xi }_{1}} - {{a}_{{21}}} - {{a}_{{22}}}{{\zeta }_{2}}}}{{{{\xi }_{2}} - {{\xi }_{1}}}}, \\ {{\chi }_{1}} = \frac{{{{b}_{{21}}}{{\zeta }_{2}} + {{b}_{{22}}}{{\xi }_{1}}{{\zeta }_{2}} - {{b}_{{11}}} - {{b}_{{12}}}{{\xi }_{1}}}}{{{{\zeta }_{2}} - {{\zeta }_{1}}}},~ \\ {{\chi }_{2}} = \frac{{{{b}_{{21}}}{{\zeta }_{1}} + {{b}_{{22}}}{{\xi }_{2}}{{\zeta }_{1}} - {{b}_{{11}}} - {{b}_{{12}}}{{\xi }_{2}}}}{{{{\zeta }_{2}} - {{\zeta }_{1}}}}, \\ \end{gathered} $$
(A2)

and the factors of influence \({{\xi }_{{1,2}}}\) and \({{\zeta }_{{1,2}}}\) are defined by the expressions

$$\begin{gathered} {{\xi }_{{1,2}}} = \frac{{{{a}_{{22}}}{{b}_{{22}}} - {{a}_{{11}}}{{b}_{{11}}} + {{a}_{{21}}}{{b}_{{12}}} - {{a}_{{12}}}{{b}_{{21}}}}}{{2\left( {{{a}_{{11}}}{{b}_{{12}}} + {{a}_{{12}}}{{b}_{{22}}}} \right)}} \\ \,\, \times \left[ {1 \pm \sqrt {1 + \frac{{4\left( {{{a}_{{22}}}{{b}_{{21}}} + {{a}_{{21}}}{{b}_{{11}}}} \right)\left( {{{a}_{{11}}}{{b}_{{12}}} + {{a}_{{12}}}{{b}_{{22}}}} \right)}}{{{{{\left( {{{a}_{{11}}}{{b}_{{11}}} - {{a}_{{22}}}{{b}_{{22}}} + {{a}_{{12}}}{{b}_{{21}}} - {{a}_{{21}}}{{b}_{{12}}}} \right)}}^{2}}}}} } \right]~, \\ \end{gathered} $$
(A3)
$${{\zeta }_{{1,2}}} = - \frac{{{{b}_{{12}}}{{\xi }_{{1,2}}} + {{b}_{{11}}}}}{{{{b}_{{22}}}{{\xi }_{{1,2}}} + {{b}_{{21}}}}}~.$$
(A4)

The transformation matrix of a TM-wave [7] has the form

$${\mathbf{N}}\left( z \right) = \left| {\begin{array}{*{20}{c}} {\frac{{ - {{\varsigma }_{2}}{{\xi }_{1}}\sqrt {{{\chi }_{2}}{{\gamma }_{1}}} \exp \left( { - j{{k}_{1}}z} \right) + {{\varsigma }_{1}}{{\xi }_{2}}\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} \exp \left( { - j{{k}_{1}}z} \right)}}{{{{\varsigma }_{1}}{{\xi }_{2}}\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} - {{\varsigma }_{2}}{{\xi }_{1}}\sqrt {{{\chi }_{2}}{{\gamma }_{1}}} }}}&{\frac{{{{\xi }_{1}}{{\xi }_{2}}\sqrt {{{\gamma }_{1}}{{\gamma }_{2}}} }}{{{{\varsigma }_{1}}{{\xi }_{2}}\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} - {{\varsigma }_{2}}{{\xi }_{1}}\sqrt {{{\chi }_{2}}{{\gamma }_{1}}} }}\left[ {\exp \left( { - j{{k}_{1}}z} \right) - \exp \left( { - j{{k}_{1}}z} \right)} \right]} \\ {\frac{{ - {{\varsigma }_{1}}{{\varsigma }_{2}}\sqrt {{{\chi }_{1}}{{\chi }_{2}}} \left[ {\exp \left( { - j{{k}_{1}}z} \right) - \exp \left( { - j{{k}_{1}}z} \right)} \right]}}{{{{\varsigma }_{1}}{{\xi }_{2}}\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} - {{\varsigma }_{2}}{{\xi }_{1}}\sqrt {{{\chi }_{2}}{{\gamma }_{1}}} }}}&{\frac{{{{\varsigma }_{1}}{{\xi }_{2}}\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} \exp \left( { - j{{k}_{1}}z} \right) - {{\varsigma }_{2}}{{\xi }_{1}}\sqrt {{{\chi }_{2}}{{\gamma }_{1}}} \exp \left( { - j{{k}_{1}}z} \right)}}{{{{\varsigma }_{1}}{{\xi }_{2}}\sqrt {{{\chi }_{1}}{{\gamma }_{2}}} - {{\varsigma }_{2}}{{\xi }_{1}}\sqrt {{{\chi }_{2}}{{\gamma }_{1}}} }}} \end{array}} \right|.$$
(A5)

Thus, in [7], the transformation matrix is represented as a diagonal block matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vytovtov, K.A., Barabanova, E.A., Vishnevsky, V.M. et al. Mathematical Model for the Separation of an Elliptically Polarized Wave in Anisotropic Photonic Crystals into TE- and TM-Waves. J. Commun. Technol. Electron. 65, 763–770 (2020). https://doi.org/10.1134/S1064226920070153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920070153

Navigation