Skip to main content
Log in

Impact of a High-Power Pulsed Plasma Flow with a Surface of High-Temperature Materials

  • PLASMA–SURFACE INTERACTION
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The objective of this work is to study the behavior of surface layers of high-temperature metals in their interaction with a powerful pulsed plasma flow produced by a high-power ablative pulsed plasma thruster. This plasma generator produces plasma flows with a directed velocity of (7–9) × 106 cm/s, an initial diameter of 1.5–2 cm, and a maximum number density of about 1018 cm–3, as well as a maximum power of 5 GW. The main measured values are the residual temperature of the tungsten specimens and the evaporated mass. Also, metallographic analysis of the specimens was performed. The basis of the research method is to analyze the experimental data with the help of a numerical model describing the heating and evaporation of the material upon absorption of pulsed energy fluxes taking into account the evaporation kinetics based on the Hertz–Knudsen expression. Based on the developed numerical model and the obtained experimental data, the kinetics of evaporation of tungsten at high power fluxes to the surface (up to 1 GW/cm2) is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. I. Langmuir, Phys. Rev. 2, 329 (1913).

    Article  ADS  Google Scholar 

  2. I. Langmuir, J. Am. Chem. Soc. 54, 2798 (1932).

    Article  Google Scholar 

  3. R. Szwarc, E. R. Plante, and J. J. Diamond, J. Res. Natl. Inst. Stan. 69A, 417 (1965).

    Article  Google Scholar 

  4. A. S. Pagan, B. Massuti-Ballester, and G. Herdrich, Front. Appl. Plasma Technol. 9, 7 (2016).

    Google Scholar 

  5. A. Boxberger and G. Herdrich, in Proceedings of the 35th International Electric Propulsion Conference, Atlanta, GA, 2017, Paper IEPC-2017-339.

  6. N. I. Arkhipov, V. P. Bakhtin, S. G. Vasenin, A. M. Zhitlukhin, S. M. Kurkin, V. M. Safronov, and D. A. Toporkov, Plasma Phys. Rep. 24, 309 (1998).

    ADS  Google Scholar 

  7. I. M. Poznyak, N. I. Arkhipov, S. V. Karelov, V. M. Safronov, and D. A. Toporkov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 37 (1), 70 (2014).

    Google Scholar 

  8. B. I. Khripunov, V. S. Koidan, A. I. Ryazanov, V. M. Gureev, S. N. Kornienko, S. T. Latushkin, A. S. Rupyshev, E. V. Semenov, V. S. Kulikauskas, and V. V. Zatekin, Phys. Proc. 71, 63 (2015).

    Article  ADS  Google Scholar 

  9. I. M. Poznyak, N. S. Klimov, V. L. Podkovyrov, V. M. Safronov, A. M. Zhitlukhin, and D. V. Kovalenko, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 35 (4), 23 (2012).

    Google Scholar 

  10. G. A. Bleicher and V. P. Krivobokov, Erosion of the Surface of a Solid under the Action of Powerful Beams of Charged Particles (Science, Novosibirsk, 2014).

    Google Scholar 

  11. A. Nawaz, U. Bauder, H. Böhrk, G. Herdrich, and M. Auweter-Kurtz, in Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, 2007, Paper AIAA-2007-5280.

  12. G. Herdrich, M. Fertig, D. Petkow, S. Kraus, S. Lohle, and M. Auweter-Kurtz, Vacuum 85, 1016 (2010).

    Article  Google Scholar 

  13. R. L. Burton and P. J. Turchi, J. Propul. Power 14, 716 (1998).

    Article  Google Scholar 

  14. M. N. Kazeev, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. III, p. 493 [in Russian].

    Google Scholar 

  15. M. N. Kazeev, Prikl. Fiz., No. 4, 14 (2000).

  16. S. I. Anisimov, Ya. A. Imas, G. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  17. M. N. Kazeev, V. F. Kozlov, and G. A. Popov, in Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, 2001, Paper IEPC-01-159.

  18. N. I. Arkhipov, V. P. Bakhtin, S. G. Vasenin, A. M. Zhitlukhin, S. M. Kurkin, V. M. Safronov, and D. A. Toporkov, Plasma Phys. Rep. 25, 236 (1999).

    ADS  Google Scholar 

  19. S. I. Anisimov and B. S. Luk’yanchuk, Phys. Usp. 45, 293 (2002).

    Article  ADS  Google Scholar 

  20. Yu. V. Afanas’ev and O. H. Krokhin, in The Physics of High Energy Densities, Ed. by P. Caldirola and H. Knoepfel (Academic, New York, 1971), p. 278.

    Google Scholar 

  21. J. P. Hirth and G. M. Pound, Condensation and Evaporation: Nucleation and Growth Kinetics (Pergamon Press, Oxford, 1963).

    Google Scholar 

  22. P. N. Smith and R. G. Ward, Can. Metallurg. Quart. 5 (2), 77 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Kazeev.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazeev, M.N., Kozlov, V.F., Koidan, V.S. et al. Impact of a High-Power Pulsed Plasma Flow with a Surface of High-Temperature Materials. Plasma Phys. Rep. 45, 445–453 (2019). https://doi.org/10.1134/S1063780X19050052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19050052

Navigation