Skip to main content
Log in

Nanoheterogeneous catalysis: Definition, state, and research prospects (Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This review is concerned with the analysis of nanoheterogeneous catalysis (catalysis in heterogeneous-dispersed systems with nanosized particles of the dispersed phase) in the hydroconversion of a vacuum distillation residue, hydrogenation of individual aromatic hydrocarbons and technical mixtures, and Fischer–Tropsch synthesis. For nanoheterogeneous catalysis, in addition to factors that are typical for heterogeneous catalysis, important factors are the size effect, the all-round accessibility of catalytically active species to reagents, the absence of a porous structure, a high efficiency of heat transfer in the dispersion medium, and an extremely low mass concentration of the catalyst in the suspension reactor (0.05–0.5%) at a high concentration of nanoparticles per reactor volume unit (1013–1015 particles per cubic centimeter). A fine tuning of catalytic processes may be performed in nanoheterogeneous catalysis via a change in the morphology, size, and structure of nanoparticles and variation in their concentration in a suspension reactor. In many cases, the aggregation of nanoparticles accompanied by the formation of nanoaggregates may become the decisive factor for the final outcome of the test reaction and special efforts are needed to stabilize the suspension of catalytically active particles. Technologies based on catalysis by nanosized particles of the dispersed phase have undergone benchmark and pilot tests and are entering the period of wide implementation in the hydroconversion of oil vacuum distillation residue and partially in the Fischer–Tropsch synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khadzhiev, S.N., Pet. Chem., 2011, vol. 51, no. 1, p. 1.

    Article  CAS  Google Scholar 

  2. Bacaud, R., Fuel, 2014, vol. 117, p. 624.

    Article  CAS  Google Scholar 

  3. Polshettivar, V. and Varma, R.S., Green. Chem., 2010, vol. 12, p. 743.

    Article  Google Scholar 

  4. Glikin, M.A., Vost.-Evr. Zh. Peredovykh Tekhnol., 2014, vol. 71, nos. 5–6, p. 4.

    Google Scholar 

  5. Karakhanov, E., Neimerovets, E., and Dedov, A., Appl. Organomet. Chem., 1990, vol. 4, no. 1, p. 1.

    Article  CAS  Google Scholar 

  6. Shiju, N.R. and Guliants, V.V., Appl. Catal., A, 2009, vol. 356, p. 1.

    Article  CAS  Google Scholar 

  7. Moiseev, I.I. and Vargaftik, M.N., Ross. Khim. Zh., 2006, vol. 50, no. 4, p. 72.

    CAS  Google Scholar 

  8. Bellussi, G., Rispoli, G., Landoni, A., Millini, R., Molinari, D., Montanari, E., Moscotti, D., and Pollesel, P., J. Catal., 2013, vol. 308, p. 189.

    Article  CAS  Google Scholar 

  9. Castaneda, L.C., Munoz, J.A.D., and Ancheyta, J., Catal. Today, 2013, vols. 220–222, p. 248.

    Google Scholar 

  10. Suvorov, Yu.P., Krichko, A.A., and Khadzhiev, S.N., Pet. Chem., 2000, vol. 40, no. 3, p. 169.

    Google Scholar 

  11. Krichko, A.A., Makar’ev, S.S., Khadzhiev, S.N., Zamanov, V.V., Imarov, A.K., Yulin, M.K., Galkina, N.I., Egorov, A.P., Suvorov, Yu.P., Basin, M.B., and Obryadin, O.S., USSR Patent 1822571, 1990.

    Google Scholar 

  12. Gorin, E., US Patent 4134821, 1979.

    Google Scholar 

  13. Karroua, M., Grange, P., and Delmon, B., Appl. Catal., 1989, vol. 50, p. L5.

    Article  CAS  Google Scholar 

  14. Panariti, N., Del Bianco, A., Del Piero, G., and Marchionna, M., Appl. Catal., A, 2000, vol. 204, p. 203.

    Article  CAS  Google Scholar 

  15. Panariti, N., Del Bianco, A., Del Piero, G., Marchionna, M., and Carniti, P., Appl. Catal., A, 2000, vol. 204, p. 215.

    Article  CAS  Google Scholar 

  16. Rispoli, G., Platts 2nd Annual European Petrochemicals Conference, Dusseldorf, March 2015.

    Google Scholar 

  17. Montanari, R. and Marchionna, M., US Patent 7691256 B2, 2010.

    Google Scholar 

  18. Montanari, R. and Marchionna, M., US Patent 8017000, 2011.

    Google Scholar 

  19. Marchionna, M. and Meli, S., US Patent 8057660, 2011.

    Google Scholar 

  20. Marchionna, M. and Meli, S., US Patent 8147675, 2012.

    Google Scholar 

  21. Marchionna, M. and Delbianco, A., US Patent 20060186021 A1, 2006.

    Google Scholar 

  22. Rispoli, G. and Bellussi, G., US Patent 20110005976 A1, 2011.

    Google Scholar 

  23. Bellussi, G. and Rispoli, G., US Patent 20110139677 A1, 2011.

    Google Scholar 

  24. Krichko, A.A., Makar’ev, S.S., Khadzhiev, S.N., Zamanov, V.V., Imarov, A.K., Yulin, M.K., Galkina, N.I., Egorov, A.P., Suvorov, Yu.P., Basin, M.B., and Obryadin, O.S., USSR Patent 1777346, 1990.

    Google Scholar 

  25. Khadzhiev, S.N., Basin, M.B., Krichko, A.A., Suvorov, Yu.P., Yulin, M.K., Imarov, A.K., Makar’ev, S.S., Grechko, V.I., Zamanov, V.V., and Moskaleva, T.V., USSR Patent 1819419, 1991.

    Google Scholar 

  26. Khadzhiev, S.N., Basin, M.B., Krichko, A.A., Grechko, V.I., Imarov, A.K., Moskaleva, T.V., Suvorov, Yu.P., Zamanov, V.V., Yulin, M.K., and Makar’ev, S.S., USSR Patent 1822572, 1991.

    Google Scholar 

  27. Khadzhiev, S.N., Basin, M.B., Krichko, A.A., Grechko, V.I., Moskaleva, T.V., Makar’ev, S.S., Imarov, A.K., Zamanov, V.V., Yulin, M.K., and Suvorov, Yu.P., USSR Patent 1822573, 1991.

    Google Scholar 

  28. Khadzhiev, S.N., Basin, M.B., Krichko, A.A., Suvorov, Yu.P., Imarov, A.K., Grechko, V.I., Makar’ev, S.S., Yulin, M.K., Moskaleva, T.V., and Zamanov, V.V., USSR Patent 1830075, 1991.

    Google Scholar 

  29. Khadzhiev, S.N., Basin, M.B., Krichko, A.A., Suvorov, Yu.P., Grechko, V.I., Zamanov, V.V., Moskaleva, T.V., Imarov, A.K., Makar’ev, S.S., and Yulin, M.K., RF Patent 2005766, 1991.

    Google Scholar 

  30. Suvorov, Yu.P., Khadzhiev, S.N., Imarov, A.K., and Zamanov, V.V., RF Patent 2087523, 1993.

    Google Scholar 

  31. Imarov, A.K., Filippova, T.F., Khadzhiev, S.N., Kasterin, V.N., Zamanov, V.V., Krichko, A.A., and Lugovoi, B.I., RF Patent 2140965, 1993.

    Google Scholar 

  32. Khadzhiev, S.N. and Khadiev, Kh.M., US Patent 7585406, 2009.

    Google Scholar 

  33. Visaliev, M.Ya., Khadzhiev, S.N., Shpirt, M.Ya., and Kadiev, Kh.M., RF Patent 2556997, 2015.

    Google Scholar 

  34. Lawrence, M.J. and Rees, G.D., Adv. Drug Delivery Rev., 2000, vol. 45, no. 1, p. 89.

    Article  CAS  Google Scholar 

  35. Khadzhiev, S.N., Khadiev, Kh.M., Yampolskaya, G.P., and Khadieva, M.Kh., Adv. Colloid Interface Sci., 2013, vols. 197–198, p. 132.

    Article  Google Scholar 

  36. Holmberg, K., Jönsson, B., Kronberg, B., and Lindman, B., Surfactants and Polymers in Aqueous Solution, Wiley, 2002, 2nd ed.

    Book  Google Scholar 

  37. Khadzhiev, S.N., Kadiev, Kh.M., and Kadieva, M.Kh., Pet. Chem., 2014, vol. 54, no. 5, p. 323.

    Article  CAS  Google Scholar 

  38. Hu, K.H., Tribol Lett., 2012, vol. 47, p. 79.

    Article  CAS  Google Scholar 

  39. Wilcoxon, J.P. and Samara, G.A., Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 51, no. 11, p. 7299.

    Article  CAS  Google Scholar 

  40. Bellussi, G., Rispolu, G., Molinari, D., Landoni, A., Pollesel, P., Panariti, N., Millini, R., and Montanari, E., Catal. Sci. Technol., 2013, vol. 3, p. 176.

    Article  CAS  Google Scholar 

  41. Park, I.S., Kwon, M.S., Kang, K.Y., Lee, J.S., and Park, J., Adv. Synth. Catal., 2007, vol. 349, p. 2039.

    Article  CAS  Google Scholar 

  42. Sizova, I.A., Kulikov, A.B., Onishchenko, M.I., Serdyukov, S.I., and Maksimov, A.L., Pet. Chem., 2016, vol. 56, no. 1, p. 44.

    Article  CAS  Google Scholar 

  43. Popov, Yu.V., Mokhov, V.M., and Nebykov, D.N., Izv. Volgogr. Gos. Tekhnol. Univ., Mezhvuz. Sb. Nauch. St., 2011, no. 2, p. 39.

    Google Scholar 

  44. Popov, Yu.V., Mokhov, V.M., and Nebykov, D.N.,., Izv. Volgogr. Gos. Tekhnol. Univ., Mezhvuz. Sb. Nauch. St., 2012, no. 5, p. 38.

    Google Scholar 

  45. Popov, Yu.V., Mokhov, V.M., Nebykov, D.N., and Fuk, C.B.,., Izv. Volgogr. Gos. Tekhnol. Univ., Mezhvuz. Sb. Nauch. St., 2013, no. 4, p. 84.

    Google Scholar 

  46. Zhang, H., Lin, H., Zheng, Y., Hu, Y., and Mac, LennanA., Appl. Catal., B, 2015, vol. 165, p. 537.

    Article  CAS  Google Scholar 

  47. Khadzhiev, S.N. and Vytnova, L.A., Pet. Chem., 2008, vol. 48, no. 2, p. 133.

    Article  CAS  Google Scholar 

  48. Gual, A., Godard, C., Castillon, S., Curulla-Ferre, D., and Claver, C., Catal. Today, 2012, vol. 183, p. 154.

    Article  CAS  Google Scholar 

  49. Khadzhiev, S.N. and Krylova, A.Yu., Pet. Chem., 2011, vol. 51, no. 2, p. 74.

    Article  CAS  Google Scholar 

  50. Itoh, H., Hosaka, H., Ono, T., and Kikuchi, E., Appl. Catal., A, 1988, vol. 40, p. 53.

    Article  CAS  Google Scholar 

  51. Itoh, H., Nagano, S., Urato, T., and Kikuchi, E., Appl. Catal., A, 1991, vol. 77, p. 37.

    Article  CAS  Google Scholar 

  52. Itoh, H., Tanabe, H., and Kikuchi, E., Appl. Catal., A, 1989, vol. 47, p. L1.

    Article  CAS  Google Scholar 

  53. Itoh, H. and Kikuchi, E., Appl. Catal., A, 1990, vol. 67, p. 1.

    Article  CAS  Google Scholar 

  54. Itoh, H., Nagano, S., Urato, T., and Kikuchi, E., Appl. Catal., A, 1991, vol. 67, p. 215.

    Article  CAS  Google Scholar 

  55. Kikuchi, E., Sorita, R., Takahashi, H., and Matsuda, T., Appl. Catal., A, 1999, vol. 186, p. 121.

    Article  CAS  Google Scholar 

  56. Xu, L., Bao, S., O’Brien, R., Houpt, D., and Davis, B.H., Iron Fischer–Tropsch catalysis—Properties of an ultrafine iron oxide catalyst. http://fischertropsch.org/DOE/DOE_reports/90056/90056_t8/90056_t8.pdf

  57. Mahajan, D. and Pandya, K., Ultrafine particles of iron in Fischer-Tropsch synthesis. http://www.anl.gov/PCS/acsfuel/preprint%20archive/Files/39_4_WASHIN-GTON %20DC_08-94_1126.pdf.

  58. Mansker, L.D., Jin, Ya., Bukur, D.B., and Datye, A.K., Appl. Catal., A, 1999, vol. 186, p. 277.

    Article  CAS  Google Scholar 

  59. Khadzhiev, S.N., Pet. Chem., 2011, vol. 51, no. 1, p. 24.

    Article  CAS  Google Scholar 

  60. Xu, L., Bao, S., O’Brien, R., Houpt, D., and Davis, B.H.,Iron Fischer–Tropsch catalysis—Properties of an ultrafine iron oxide catalyst. http://fischertropsch.org/DOE/DOE_reports/90056/90056_t8/90056_t8.pdf

  61. Mahajan, D., Kobayashi, A., and Gupta, N., J. Chem. Soc., Chem. Commun., 1994, no. 7, p. 1039.

    Google Scholar 

  62. Cheng, X., Wu, B., Yang, Y., Xiang, H., and Li, Y., J. Mol. Catal. A: Chem., 2010, vol. 329, p. 103.

    Article  CAS  Google Scholar 

  63. Khassin, A.A., Yurieva, T.M., and Parmon, V.N., React. Kinet. Catal. Lett., 1998, vol. 64, no. 1, p. 55.

    Article  CAS  Google Scholar 

  64. Cai, Z.P., Wang, T., Kou, Y., and Yan, N., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 746.

    Article  Google Scholar 

  65. Kou, Y., Yang, N., Xiao, C., Cai, Z., and Li, Y., CAN Patent 2681319, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Khadzhiev.

Additional information

Original Russian Text © S.N. Khadzhiev, 2016, published in Nanogeterogennyi Kataliz, 2016, Vol. 1, No. 1, pp. 3–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadzhiev, S.N. Nanoheterogeneous catalysis: Definition, state, and research prospects (Review). Pet. Chem. 56, 465–479 (2016). https://doi.org/10.1134/S0965544116060050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116060050

Keywords

Navigation