Skip to main content
Log in

Tribological Properties of MoS2 with Different Morphologies in High-Density Polyethylene

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The tribological properties of high-density polyethylene (HDPE) modified by MoS2 with different morphologies (nano-spheres, nano-platelets, and micro-platelets) were investigated using an end-face tribometer under dry friction and rapeseed oil lubrication. Under dry friction, MoS2 nano-platelets and nano-spheres exhibited their best properties at 1.0 and 1.5 % (wt%) MoS2 content, respectively. Under oil lubrication, the nano-spheres were better additives in HDPE than the other two. The melting of HDPE was the main wear mechanism under dry friction, whereas abrasive is the main wear mechanism under oil lubrication. The changing wear mechanisms led to anti-wear variations in HDPEs with increasing MoS2 contents. The tribological properties were closely related to the crystallinity and thermo-mechanical properties of MoS2/HDPE. The samples with lower damping factors and better crystallinity showed better tribological properties. The excellent anti-wear properties of nano-spheres can be attributed to the deformation and exfoliation of nano-spheres in the friction process. Nano-platelets and nano-spheres in HDPE are advantageous under dry friction and oil lubrication, respectively. This study better elucidated the relationship between the property and morphology of MoS2 in a polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Sloan, J., Hutchison, J.L., Tenne, R.: Inorganic fullerene-like material as additives to lubricants: structure–function relationship. Wear 225–229, 975–982 (1999)

    Article  Google Scholar 

  2. Hu, K.H., Hu, X.G., Sun, X.J.: Morphological effect of MoS2 nanoparticles on catalytic oxidation and vacuum lubrication. Appl. Surf. Sci. 256, 2517–2523 (2010)

    Article  CAS  Google Scholar 

  3. Hu, X.G.: On the size effect of molybdenum disulfide particles on tribological performance. Ind. Lubr. Tribol. 57, 255–259 (2005)

    Article  Google Scholar 

  4. Rapoport, L., Moshkovich, A., Perfilyev, V., Laikhtman, A., Lapsker, I., Yadgarov, L., Rosentsveig, R., Tenne, R.: High lubricity of re-doped fullerene-like MoS2 nanoparticles. Tribol. Lett. 45, 257–264 (2012)

    Article  CAS  Google Scholar 

  5. Zou, T.Z., Tu, J.P., Huang, H.D., Lai, D.M., Zhang, L.L., He, D.N.: Preparation and tribological properties of inorganic fullerene-like MoS2. Adv. Eng. Mater. 8, 289–293 (2006)

    Article  CAS  Google Scholar 

  6. Tannous, J., Dassenoy, F., Lahouij, I., Le Mogne, T., Vacher, B., Bruhács, A., Tremel, W.: Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication. Tribol. Lett. 41, 55–64 (2011)

    Article  CAS  Google Scholar 

  7. Lahouij, I., Dassenoy, F., Vacher, B., Martin, J.-M.: Real time TEM imaging of compression and shear of single fullerene-like MoS2 nanoparticle. Tribol. Lett. 45, 131–141 (2012)

    Article  CAS  Google Scholar 

  8. Chhowalla, M., Amaratunga, G.A.J.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164–167 (2000)

    Article  CAS  Google Scholar 

  9. Rosentsveig, R., Gorodnev, A., Feuerstein, N., Friedman, H., Zak, A., Fleischer, N., Tannous, J., Dassenoy, F., Tenne, R.: Fullerene-like MoS2 nanoparticles and their tribological behavior. Tribol. Lett. 36, 175–182 (2009)

    Article  CAS  Google Scholar 

  10. Rapoport, L., Fleischer, N., Tenne, R.: Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15, 1782–1788 (2005)

    Article  CAS  Google Scholar 

  11. Feldman, Y., Wasserman, E., Srolovitz, D.J., Tenne, R.: High rate, gas phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995)

    Article  CAS  Google Scholar 

  12. Cizaire, L., Vacher, B., Le Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, R.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 160, 282–287 (2002)

    Article  CAS  Google Scholar 

  13. Nath, M., Govindaraj, A., Rao, C.N.R.: Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13, 283–286 (2001)

    Article  CAS  Google Scholar 

  14. Hu, K.H., Hu, X.G.: Formation, exfoliation and restacking of MoS2 nanostructures. Mater. Sci. Technol. 25, 407–414 (2009)

    Article  CAS  Google Scholar 

  15. Garadkar, K.M., Patil, A.A., Hankare, P.P., Chate, P.A., Sathe, D.J., Delekar, S.D.: MoS2: preparation and their characterization. J. Alloys Compd. 487, 786–789 (2009)

    Article  CAS  Google Scholar 

  16. Liu, S., Zhang, X., Shao, H., Xu, J., Chen, F., Feng, Y.: Preparation of MoS2 nanofibers by electrospinning. Mater. Lett. 73, 223–225 (2012)

    Article  CAS  Google Scholar 

  17. Lin, H., Chen, X., Li, H., Yang, M., Qi, Y.: Hydrothermal synthesis and characterization of MoS2 nanorods. Mater. Lett. 64, 1748–1750 (2010)

    Article  CAS  Google Scholar 

  18. Wilcoxon, J.P., Newcomer, P.P., Samara, G.A.: Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J. Appl. Phys. 81, 7934–7944 (1997)

    Article  CAS  Google Scholar 

  19. Hu, K.H., Hu, X.G., Xu, Y.F., Huang, F., Liu, J.S.: The effect of morphology on the tribological properties of MoS2 in liquid paraffin. Tribol. Lett. 40, 155–165 (2010)

    Article  CAS  Google Scholar 

  20. Daage, M., Chianelli, R.R.: Structure–function relations in molybdenum sulfide catalysts: the “rim-edge” model. J. Catal. 149, 414–427 (1994)

    Article  CAS  Google Scholar 

  21. Sahoo, R.R., Biswas, S.K.: Microtribology and friction-induced material transfer in layered MoS2 nanoparticles sprayed on a steel surface. Tribol. Lett. 37, 313–326 (2010)

    Article  CAS  Google Scholar 

  22. Hu, K.H., Wang, J., Schraube, S., Xu, Y.F., Hu, X.G., Stengler, R.: Tribological properties of MoS2 nano-balls as filler in plastic layer of three-layer self-lubrication bearing materials. Wear 266, 1198–1207 (2009)

    Article  CAS  Google Scholar 

  23. Lahouij, I., Dassenoy, F., de Knoop, L., Martin, J.-M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133–140 (2011)

    Article  CAS  Google Scholar 

  24. Xue, Y., Wu, W., Jacobs, O., Schädel, B.: Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym. Test. 25, 221–229 (2006)

    Article  CAS  Google Scholar 

  25. Li, K., Tjong, S.C.: Preparation and mechanical and tribological properties of high-density polyethylene/hydroxyapatite nanocomposites. J. Macromol. Sci. Part B Phys. 50, 1325–1337 (2011)

    Article  CAS  Google Scholar 

  26. Cong, P., Xiang, F., Liu, X., Li, T.: Effect of crystalline form on the tribological properties of PA46/HDPE polyblends. Wear 265, 1106–1113 (2008)

    Article  CAS  Google Scholar 

  27. Palabiyik, M., Bahadur, S.: Mechanical and tribological properties of polyamide 6 and high density polyethylene polyblends with and without compatibilizer. Wear 246, 149–158 (2000)

    Article  CAS  Google Scholar 

  28. Lontz, J.F., Kumnick, M.C.: Wear studies on moldings of PTFE resin: considerations of crystallinity and graphite content. ASLE Trans. 6, 276–285 (1963)

    Article  Google Scholar 

  29. Yamada, Y., Tanaka, K.: Effect of the degree of crystallinity on friction and wear of poly(ethylene terephthalate). In: Lee, L.H. (ed.) Polymer wear and its control, pp. 363–374. ACS, New York (1985)

    Chapter  Google Scholar 

  30. Ni, Z., Ge, S.: The biotribological behavior of ultra-high molecular weight polyethylene as a function of crystallinity. Lubr. Eng. 33, 1–4 (2008). (in Chinese)

    Google Scholar 

  31. Gu, W., Kampe, S.L., Lu, G.-Q.: Correlation of fiber pull-out strength and interfacial vibration damping techniques by micromechanical analysis. J. Mater. Sci. 33, 5731–5737 (1998)

    Article  CAS  Google Scholar 

  32. Joly-Pottuz, L., Martin, J.M., Dassenoy, F., Belin, M., Montagnac, R., Reynard, B.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524–023528 (2006)

    Article  Google Scholar 

  33. Tevet, O., Goldbart, O., Cohen, S.R., Rosentsveig, R., Popovitz-Biro, R., Wagner, H.D., Tenne, R.: Nanocompression of individual multilayered polyhedral nanoparticles. Nanotechnology 21, 365705–365711 (2010)

    Article  CAS  Google Scholar 

  34. Schwarz, U.S., Komura, S., Safran, S.A.: Deformation and tribology of multi-walled hollow nanoparticles. Europhys. Lett. 50(6), 762–768 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 50905054), the China Postdoctoral Science Foundation (Grant No. 2011M500110), the Foundation of State Key Laboratory of Solid Lubrication (Grant No. 0907), and Hefei University Talents Foundation (Grant No. 12RC03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Hong Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K.H., Hu, X.G., Wang, J. et al. Tribological Properties of MoS2 with Different Morphologies in High-Density Polyethylene. Tribol Lett 47, 79–90 (2012). https://doi.org/10.1007/s11249-012-9964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9964-1

Keywords

Navigation