Skip to main content
Log in

Effect of Vanadium on the Microstructure and Mechanical Properties of Laminated Nb–V/Al Composites Fabricated by Solid-Phase Technology

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The microstructure, mechanical properties, and heat resistance of the laminated composites fabricated by high-pressure diffusion welding of a packet comprising alternating foils of niobium alloy with 5, 10, and 15 at % vanadium and aluminum are studied. The alternation of viscoplastic Nb–V alloy layers and strengthening aluminide layers is found to provide a high strength of the composites at 20–1300°C, which increases with the vanadium content in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. A. Skibin, V. E. Saren, N. M. Savin, and S. M. Frolov, Turbomachines: Aeroelasticity, Aeroacoustics, and Unsteady Aerodynamics (Torus Press, Moscow, 2006).

    Google Scholar 

  2. High-Temperature Gas Turbines, Ed. by M. Ya. Ivanova (Torus Press, Moscow, 2010).

    Google Scholar 

  3. O. G. Ospennikova, “Strategy for the development of heat resistant alloys and special-purpose steels, protective and heat-resistant coatings,” Aviats. Mater. Tehknol., No. 5, 19–36 (2012).

  4. I. L. Svetlov, “High-temperature Nb–Si composites,” Materialoved., No. 9, 29–38 (2010).

  5. I. L. Svetlov, M. I. Karpov, A. V. Neiman, and T. S. Stroganova, “Temperature dependence of the ultimate strength in in-situ multicomponent Nb–Si–X (X = Ti, Hf, W, Cr, Al, Mo) composites,” Russ. Metall. (Metally), No. 4, 348–353 (2018).

  6. B. P. Bewlay, M. R. Jackson, P. R. Subramanian, and J.-C. Zhao, “A review of very-high-temperature Nb-silicide-based composites,” Metall. Mater. Trans. A 34, 2043–2052 (2003).

    Article  Google Scholar 

  7. D. L. Guan, C. R. Brooks, and P. K. Liaw, “Microstructure and mechanical properties of as-cast and aged Nb–15 at % Al–10 at % Ti, –25 at % Ti and –40 at % Ti alloys,” Intermetallics 10 (5), 441–458 (2002).

    Article  CAS  Google Scholar 

  8. P. Jéhanno, M. Heilmaier, H. Saage, H. Heyse, M. Böning, H. Kestler, and J. H. Schneibel, “Superplasticity of a multiphase refractory Mo–Si–B alloy,” Scr. Mater. 55 (6), 525–528 (2006).

    Article  Google Scholar 

  9. Z. K. Li, J. L. Yu, X. Zheng, J. J. Zhang, H. Liu, R. Bai, and W. S. Wang, “Superplasticity of a multiphase fine-grained Mo–Si–B alloy, “Powder Technol. 214 (1), 54–56 (2011).

    Article  CAS  Google Scholar 

  10. J. Heathcote, G. R. Odette, G. E. Lucas, R. G. Rowe, and D. W. Skelly, “On the micromechanics of low temperature strength and toughness of intermetallic/metallic microlaminate composites,” Acta Mater. 44 (11), 4289–4299 (1996).

    Article  Google Scholar 

  11. H. Cao, J. P. Löfvander, A. G. Evans, R. G. Rowe, and D. W. Skelly, “Mechanical properties of an in-situ synthesized Nb/Nb3A1 layered composite,” Mater. Sci. Eng. A. 185 (1, 2), 87–95 (1994).

  12. K. Barmak, C. Michaelsen, S. Vivekanand, and F. Ma, “Formation of the first phase in sputter-deposited Nb/Al multilayer thin film,” Philos. Mag. A 77 (1), 167–185 (1998).

    Article  CAS  Google Scholar 

  13. G. Lucadamo, K. Barmak, S. Hyun, C. Cabral Jr., and C. Lavoie, “Evidence of a two-stage reaction mechanism in sputter deposited Nb–Al multilayer thin-films studied by in situ synchrotron X-ray diffraction,” Mater. Let. 39 (5), 268–273 (1999).

    Article  CAS  Google Scholar 

  14. D. R. Bloyer, K. V. Rao, and R. O. Ritchie, “Toughness and subcritical crack growth in Nb/Nb3Al layered materials,” in Proceedings of Symposium on Layered Materials for Structural Applications (San Francisco, 1996), Vol. 434, pp. 243–248.

  15. V. M. Kiiko and V. P. Korzhov, “Structure and failure characteristics of layered Ni–Al composites,” Poverhn. Rentgen., Sinkhroton. Neitron. Issled., No. 11, 42–51 (2017).

  16. V. P. Korzhov, V. N. Kurlov, D. O. Stryukov, and V. M. Kiiko, “Development of (Nb–Al) composite with oxide fibers,” Vestn. Tambov. Univ. Ser. Estestv. Tekhn. Nauki, 23 (123), 427–431 (2018).

    Google Scholar 

  17. V. P. Korzhov, “Solid-phase preparation and superconducting properties of the Nb3Al compound,” Vestn. Tambov. Univ. Ser. Estestv. Tekhn. Nauki, 21 (3), 1066–1069 (2016).

    Google Scholar 

  18. V. P. Korzhov and V. M. Kiiko, “Structure and mechanical properties of laminated Ni/Al composites strengthened with intermetallics,” Deform. Razrushenie Mater., No. 6, 6–11 (2015).

  19. V. P. Korzhov, “Effect of carbide-forming elements and carbon on the current-carrying ability of diffusion superconducting-compound layer,” in Science, Education, Society: Tendencies and Perspectives (2013), Vol. 2, pp. 128–135.

  20. V. P. Korzhov, M. I. Karpov, and D. V. Prokhorov, “Multilayered structure and high-temperature strength of heat-resistant materials based on niobium–aluminum–silicon compounds prepared from Nb–Al and Nb–Si composites,” Fiz. Tekhn. Vys. Davl., 23 (1), 99–107 (2013).

    CAS  Google Scholar 

  21. S. Sircar, K. Chattopadhyay, and J. Mazumder, “Nonequilibrium synthesis of NbAl3 and Nb–Al–V,” Metall. Trans. A 23 (9), 2419–2429 (1992).

    Article  Google Scholar 

  22. S. Dymek, A. Lorent, M. Wröbel, and A. Dollar, “Mechanical alloying and microstructure of a Nb–20% V–15% Al alloy,” Mater. Charact. 47 (5), 375–381 (2001).

    Article  CAS  Google Scholar 

  23. A. Dollar and S. Dymek, “Microstructure and high temperature mechanical properties of mechanically alloyed Nb3Al-based materials,” Intermetall. 11 (4), 341–349 (2003).

    Article  CAS  Google Scholar 

  24. A. M. Glezer, T. M. Shirinov, M. I. Glazyrina, B. V. Molotilov, V. E. Gromov, and S. V. Konovalov, “Effect of alloying with chromium and vanadium on the mechanical properties of equiatomic Fe–Co alloys,” Fundam. Probl. Sovrem. Materialoved. 4 (1), 111–113 (2007).

    Google Scholar 

  25. J. L. Pouchou and F. Pichoir, “A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples,” Recherche Aerospatiale 3, 13–38 (1984).

    Google Scholar 

  26. M. I. Karpov, V. I. Vnukov, T. S. Stroganova, D. V. Prokhorov, I. S. Zheltyakova, B. A. Gnesin, and I. L. Svetlov, “Effect of silicon content on the microstructure and mechanical properties of niobium–silicon-based alloy,” Izv. Ross. Akad. Nauk. Ser. Fiz. 83 (10), 1353–1361 (2019).

    Google Scholar 

  27. M. I. Karpov, D. V. Prokhorov, V. I. Vnukov, T. S. Stroganova, B. A. Gnesin, I. B. Gnesin, and I. L. Svetlov, “Structure and high-temperature mechanical properties of high-carbon niobium-based alloys,” Deform. Razrushenie Mater., No. 5, 12–18 (2019).

  28. M. I. Karpov, “Niobium-base refractory alloys with silicide and carbide hardening current status and prospects,” Met. Sci. Heat Treat. 60 (1, 2), 7–12 (2018).

Download references

ACKNOWLEDGMENTS

We thank V.M. Kiiko and T.S. Stroganova (Institute of Solid State Physics, Russian Academy of Sciences) for their assistance and consultations on the mechanical tests.

Funding

This study was supported by the Russian Science Foundation, project. no 18-33-01266mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Prokhorov.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, D.V., Korzhov, V.P. & Nekrasov, A.N. Effect of Vanadium on the Microstructure and Mechanical Properties of Laminated Nb–V/Al Composites Fabricated by Solid-Phase Technology. Russ. Metall. 2021, 367–372 (2021). https://doi.org/10.1134/S0036029521040261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521040261

Keywords:

Navigation