Skip to main content
Log in

Effect of the carrier gas pressure on the dynamic and separation characteristics of divinylbenzene-based monolithic capillary columns for gas chromatography

  • Chromatographic Separation
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The efficiency and dynamic characteristics of divinylbenzene-based monolithic capillary columns for gas chromatography were analyzed using a test mixture composed of five light hydrocarbons. The chromatographic properties of these columns were evaluated within the framework of two varieties of the van Deemter equation, the classical one and that proposed by Giddings (with consideration given to the pressure drop across the column). An analysis of the van Deemter curves demonstrated that the main contribution to peak smearing comes from the diffusion processes in the mobile phase. The contribution from the resistance to mass transfer between the mobile and stationary phases is less important. Negative values obtained for A in the van Deemter equation and for C s in the Giddings model, parameters that characterize the stationary phase structure and mass transfer kinetics in the stationary phase, have no physical meaning, a result calling for further studies of this type of monolithic capillary columns since the classical theory supposed these parameters to be strictly positive. Under optimal conditions, the HETP of the monolithic columns was found to be 3 to 4 times smaller than that typical of open capillary columns of the same diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Poole and S. Poole, Chromatography Today (Elsevier, Amsterdam, 1991).

    Google Scholar 

  2. H. H. Lauer, H. Poppe, and J. F. K. Huber, J. Chromatogr. 132, 1 (1977).

    Article  CAS  Google Scholar 

  3. Y. Shen and M. L. Lee, J. Chromatogr., A 778, 31 (1997).

    Article  CAS  Google Scholar 

  4. N. Wu, J. C. Medina, and M. L. Lee, J. Chromatogr., A 892, 3 (2000).

    Article  CAS  Google Scholar 

  5. C. A. Cramers, H. Janssen, M. M. van Deursen, and P. A. Leclercq, J. Chromatogr., A 856, 315 (1999).

    Article  CAS  Google Scholar 

  6. R. P. Crowley, US Patent No. 3422605 (1969).

  7. W. Ross and R. Jefferson, J. Chromatogr. Sci. 8, 386 (1970).

    CAS  Google Scholar 

  8. H. Schnecks and O. Bieber, Chromatografia 4, 109 (1971).

    Article  Google Scholar 

  9. R. Jefferson and I. Salyer, U.S. Patent No. 3574160 (1971).

  10. I. Salyer, R. Jefferson, and W. Ross, U.S. Patent No. 3580843 (1971).

  11. M. L. Lee, F. J. Yang, and K. D. Bartle, Open Tubular Column Gas Chromatography. Theory and Practice (Wiley, New York, 1984).

    Google Scholar 

  12. A. A. Korolev, V. E. Shiryaeva, T. P. Popova, and A. A. Kurganov, Zh. Fiz. Khim. 80, 1290 (2006) [Russ. J. Phys. Chem. 80, 1135 (2006)].

    Google Scholar 

  13. A. A. Korolev, V. E. Shiryaeva, T. P. Popova, and A. A. Kurganov, Zh. Fiz. Khim. 80, 132 (2006) [Russ. J. Phys. Chem. 80, 121 (2006)].

    Google Scholar 

  14. A. A. Korolev, V. E. Shiryaeva, T. P. Popova, et al., Vysokomol. Soedin., Ser A 48(8), 1373 (2006) [Polym. Sci., Ser. A 48 (8), 779 (2006)].

    CAS  Google Scholar 

  15. A. A. Korolev, V. E. Shiryaeva, T. P. Popova, and A. A. Kurganov, Zh. Anal. Khim. (in press).

  16. A. A. Korolev, V. E. Shiryaeva, T. P. Popova, and A. A. Kurganov, Zh. Fiz. Khim. 80, 896 (2006) [Russ. J. Phys. Chem. 80, 781 (2006)].

    Google Scholar 

  17. L. S. Ettre, J. V. Hinshaw, and L. Rohrschneider, Grundbegriffe und Gleichungen der Gaschromatographie (A. Huthig, Heidelberg, 1996).

    Google Scholar 

  18. A. A. Korolev, V. E. Shiryaeva, T. P. Popova, and A. A. Kurganov, Zh. Fiz. Khim. 80(4), 709 (2006) [Russ. J. Phys. Chem. 80 (4), 609 (2006)].

    Google Scholar 

  19. J. C. Giddings, S. L. Seager, L. R. Stucki, and G. H. Stewart, Anal. Chem. 32, 867 (1969).

    Article  Google Scholar 

  20. M. Motokawa, H. Kobayashi, N. Ishizuka, et al., J. Chromatogr., A 961, 53 (2002).

    Article  CAS  Google Scholar 

  21. M. Kele and G. Guiochon, J. Chromatogr., A 960, 12 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Kozin, A.A. Korolev, V.E. Shiryaeva, T.P. Popova, A.A. Kurganov, 2007, published in Zhurnal Fizicheskoi Khimii, 2007, Vol. 81, No. 3, pp. 512–520.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozin, A.V., Korolev, A.A., Shiryaeva, V.E. et al. Effect of the carrier gas pressure on the dynamic and separation characteristics of divinylbenzene-based monolithic capillary columns for gas chromatography. Russ. J. Phys. Chem. 81, 433–440 (2007). https://doi.org/10.1134/S0036024407030259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024407030259

Keywords

Navigation