Skip to main content
Log in

Characteristic Features of Solar Cosmic Rays in the 21st–24th Solar-Activity Cycles According to Data from Catalogs of Solar Proton Events

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Homogeneous series of solar cosmic-ray events for four solar-activity cycles against the background of decreased activity in cycles 23 and 24 are considered. The number of solar cosmic-ray events with energies above 10 MeV decreased insignificantly, while the number of ground-level enhancements in comparison between cycles 23 and 24 decreased by eight times. It is shown that the average contribution of flares to the generation of ground-level enhancements decreased from cycle 23 to cycle 24 by three times, and the average contribution of coronal mass ejections decreased by five times; the average contribution of flares to the generation of solar cosmic rays with energy >10 MeV decreased by 1.3 times, and the average contribution of coronal mass ejections increased by 1.4 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Catalog of Solar Particle Events 1955–1969, Svestka, Z. and Simon, P., Eds., D. Reidel, 1975.

    Google Scholar 

  2. Charakhch’yan, A.N., Investigation of stratosphere cosmic ray intensity fluctuations induced by processes on the Sun, Phys.-Usp., 1964, vol. 7, no. 3, pp. 358–374.

    Google Scholar 

  3. Chertok, I.M., Diagnostic analysis of the solar proton flares of September 2017 by their radio bursts, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 4, pp. 457–463.

  4. Cliver, E.W., Kahler, S.W., Kazachenko, M., and Shimojo, M., The disappearing solar filament of 2013 September 29 and its large associated proton event: Implications for particle acceleration at the Sun, Astrophys. J., 2019, vol. 877, no. 1, id 11. https://doi.org/10.3847/1538-4357/ab0e03

  5. Dierckxsens, M., Tziotziou, K., Dalla, S., et al., Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of solar cycle 23 events, Sol. Phys., 2015, vol. 290, pp. 841–874. https://doi.org/10.1007/s11207-014-0641-4

    Article  Google Scholar 

  6. Forbush, S.E., Three unusual cosmic-ray increases possibly due to charged particles from the Sun, Phys. Rev., 1946, vol. 70, pp. 771–772. https://doi.org/10.1103/PhysRev.70.771

    Article  Google Scholar 

  7. URL CME https://cdaw.gsfc.nasa.gov/CME_list/.

  8. URL nasa sepe https://cdaw.gsfc.nasa.gov/CME_list/sepe/.

  9. URL gle.oulu http://gle.oulu.fi.

  10. URL omni https://omniweb.gsfc.nasa.gov/form/dx1.html.

  11. URL flares https://www.ngdc.noaa.gov/stp/space-weather/ solar-data/solar-features/solar-flares/x-rays/goes/xrs/.

  12. URL Rz http://www.sidc.be/silso/datafiles.

  13. Ishkov, V.N., Space weather and specific features of the development of current solar cycle, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 6, pp. 753–767.

  14. Klein, K.-L. and Dalla, S., Acceleration and propagation of solar energetic particles, Space Sci. Rev., 2017, vol. 212, pp. 1107–1136. https://doi.org/10.1007/s11214-017-0382-4

    Article  Google Scholar 

  15. Kocharov, L., Pesce-Rollins, M., Laitinen, T., et al., Interplanetary protons versus interacting protons in the 2017 10 solar eruptive event, Astrophys. J., 2020, vol. 890, no. 1, id 13. https://doi.org/10.3847/1538-4357/ab684e

  16. Kurt, V., Belov, A., Mavromichalaki, H., and Gerontidou, M., Statistical analysis of solar proton events, Ann. Geophys., 2004, vol. 22, pp. 2255–2271.

    Article  Google Scholar 

  17. Lario, D. and Karelitz, A., Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle events, J. Geophys. Res.: Space, 2014, vol. 119, pp. 4185–4209. https://doi.org/10.1002/2014JA019771

    Article  Google Scholar 

  18. Lario, D., Kwon, R.-Y., Richardson, I.G., Raouafi, N.E., et al., The solar energetic particle event of 2010 August 14: Connectivity with the solar source inferred from multiple spacecraft observations and modeling, Astrophys. J., 2017, vol. 838, no. 1, id 51. https://doi.org/10.3847/1538-4357/aa63e4

  19. Logachev, Yu.I., Ed., Catalog of Solar Proton Events 1970–1979, Moscow: IZMIRAN, 1982. http://www.wdcb.ru/ stp/data/SPE/SPE_1970-1979.pdf.

    Google Scholar 

  20. Logachev, Yu.I., Ed., Catalog of Energy Spectra of Solar Proton Events 1970–1979, Moscow: IZMIRAN, 1986. http://www.wdcb.ru/stp/data/SPE/SPE_1970-1979_ (SPECTRA).pdf.

    Google Scholar 

  21. Logachev, Yu.I., Ed., Catalog of Solar Proton Events 1980–1986, Data on Particles and Electromagnetic Emissions, Moscow: MGK AN SSSR, 1990a. http://www.wdcb.ru/ stp/data/SPE/SPE_1980-1986.pdf.

    Google Scholar 

  22. Logachev, Yu.I., Ed., Catalog of Solar Proton Events 1980–1986, Plots on the Time Profiles and Energetic Spectra of Protons, Synoptic Charts and Schemes of Sunspot Groups, Moscow: MGK AN SSSR, 1990b. http://www.wdcb.ru/ stp/data/SPE/SPE_1980-1986_(SPECTRA).pdf.

    Google Scholar 

  23. Logachev, Yu.I., Ed., Catalog of Solar Proton Events 1987–1996, Moscow: Moscow Univ. Press, 1998. http://www. wdcb.ru/stp/data/SPE/SPE_1987-1996.pdf.

    Google Scholar 

  24. Logachev, Yu.I., Bazilevskaya, G.A., Vashenyuk, E.V., et al., Catalog of Proton Events in Cycle 23 of Solar Activity (1996–2008), Moscow, 2016. http://www.wdcb.ru/ stp/data/SPE/katalog_SPS_23_cikla_SA.pdf.

  25. Miroshnichenko, L.I., Solar cosmic rays: 75 years of research, Phys.-Usp., 2018, vol. 61, no. 4, pp. 323–354.

    Article  Google Scholar 

  26. Mishev, A., Poluianov, S., and Usoskin, I., Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network, J. Space Weather Space Clim., 2017, vol. 7, id A28. https://doi.org/10.1051/swsc/2017026

  27. Miteva, R., Samwel, S.W., and Costa-Duarte, M.V., The Wind/EPACT proton event catalog (1996–2016), Sol. Phys., 2018, vol. 293, id 27. https://doi.org/10.1007/s11207-018-1241-5

  28. Muraki, Y. and Valdes-Galicia, J.F., González, L.X., et al., Possible detection of solar gamma-rays by ground-level detectors in solar flares on 2011 March 7, Publ. Astron. Soc. Jpn., 2020, vol. 72, pp. 1–17. https://doi.org/10.1093/pasj/psz141

    Article  Google Scholar 

  29. de Nolfo, G.A., Bruno, A., Ryan, J.M., et al., Comparing long-duration gamma-ray flares and high-energy solar energetic particles, Astrophys. J., 2019, vol. 879, no. 2, id 90. https://doi.org/10.3847/1538-4357/ab258f

  30. Paassilta, M., Papaioannou, A., Dresing, N., et al., Catalogue of > 55 MeV wide-longitude solar proton events observed by SOHO, ACE, and the STEREOs at ≈1 AU during 2009–2016, Sol. Phys., 2018, vol. 293, id 70. https://doi.org/10.1007/s11207-018-1284-7

  31. Papaioannou, A., Malandraki, O.E., Dresing, N., et al., SEPserver catalogues of solar energetic particle events at 1 AU based on STEREO recordings: 2007–2012, Astron. Astrophys., 2014, vol. 569, id A96. https://doi.org/10.1051/0004-6361/201323336

  32. Papaioannou, A., Sandberg, I., Anastasiadis, A., et al., Solar flares, coronal mass ejections and solar energetic particle event characteristics, J. Space Weather Space Clim., 2016, vol. 6, id A42. https://doi.org/10.1051/swsc/2016035

  33. Simpson, J.A., Cosmic-radiation neutron intensity monitor, Ann. Int. Geophys. Year, 1957, vol. 4, pp. 351–373.

    Google Scholar 

  34. Solar Particle Radiation Storms Forecasting and Analysis (The HESPERIA HORIZON 2020 Project and Beyond), Malandraki, O. and Crosby, N.B., Eds., Springer, 2018. https://doi.org/10.1007/978-3-319-60051-2

    Book  Google Scholar 

  35. Struminskii, A.B., Grigor’eva, I.Yu., Logachev, Yu.I., and Sadovskii, A.M., Solar electrons and protons in the events of September 4–10, 2017 and related phenomena, Plasma Phys. Rep., 2020, vol. 46, no. 2, pp. 174–188.

    Article  Google Scholar 

  36. Vainio, R., Valtonen, E., Heber, B., et al., The first SEPserver event catalogue ~68-MeV solar proton events observed at 1 AU in 1996–2010, J. Space Weather Space Clim., 2013, vol. 3, id A12. https://doi.org/10.1051/swsc/2013030

Download references

ACKNOWLEDGMENTS

We would like to thank all researchers who have submitted their data on solar activity and parameters of the interplanetary medium via the Internet: Rz, (http://www.sidc.be/ silso/datafiles); flares, (https://www.ngdc.noaa.gov/stp/ space-weather/solar-data/solar-features/solar-flares/x-rays/ goes/xrs/); CME, (https://cdaw.gsfc.nasa.gov/CME_ list/). References to numerous sources of SCRs were given earlier (Logachev et al., 2016). G.A. Bazilevskaya is grateful for the discussions within the project “High EneRgy sOlar partICle events analysis (HEROIC)” of the International Space Science Institute (ISSI) under the leadership of Dr. A. Papaioanou.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Bazilevskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazilevskaya, G.A., Daibog, E.I., Logachev, Y.I. et al. Characteristic Features of Solar Cosmic Rays in the 21st–24th Solar-Activity Cycles According to Data from Catalogs of Solar Proton Events. Geomagn. Aeron. 61, 6–13 (2021). https://doi.org/10.1134/S0016793221010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221010023

Navigation