Skip to main content
Log in

Acceleration and Propagation of Solar Energetic Particles

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Solar Energetic Particles (SEPs) are an important component of Space Weather, including radiation hazard to humans and electronic equipment, and the ionisation of the Earth’s atmosphere. We review the key observations of SEPs, our current understanding of their acceleration and transport, and discuss how this knowledge is incorporated within Space Weather forecasting tools. Mechanisms for acceleration during solar flares and at shocks driven by Coronal Mass Ejections (CMEs) are discussed, as well as the timing relationships between signatures of solar eruptive events and the detection of SEPs in interplanetary space. Evidence on how the parameters of SEP events are related to those of the parent solar activity is reviewed and transport effects influencing SEP propagation to near-Earth locations are examined. Finally, the approaches to forecasting Space Weather SEP effects are discussed. We conclude that both flare and CME shock acceleration contribute to Space Weather relevant SEP populations and need to be considered within forecasting tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • M. Ackermann, M. Ajello, A. Albert, A. Allafort, L. Baldini et al., High-energy gamma-ray emission from solar flares: summary of Fermi Large Area Telescope detections and analysis of two M-class flares. Astrophys. J. 787, 15 (2014). doi:10.1088/0004-637X/787/1/15

    Article  ADS  Google Scholar 

  • A. Afanasiev, M. Battarbee, R. Vainio, Self-consistent Monte Carlo simulations of proton acceleration in coronal shocks: effect of anisotropic pitch-angle scattering of particles. Astron. Astrophys. 584, A81 (2015). doi:10.1051/0004-6361/201526750

    Article  ADS  Google Scholar 

  • N. Agueda, K.L. Klein, N. Vilmer, R. Rodríguez-Gasén, O.E. Malandraki et al., Release timescales of solar energetic particles in the low corona. Astron. Astrophys. 570, A5 (2014). doi:10.1051/0004-6361/201423549

    Article  Google Scholar 

  • N. Agueda, R. Vainio, D. Lario, B. Sanahuja, Injection and interplanetary transport of near-relativistic electrons: modeling the impulsive event on 2000 May 1. Astrophys. J. 675, 1601–1613 (2008). doi:10.1086/527527

    Article  ADS  Google Scholar 

  • M. Ajello, A. Albert, A. Allafort, L. Baldini, G. Barbiellini et al., Impulsive and long duration high-energy gamma-ray emission from the very bright 2012 March 7 solar flares. Astrophys. J. 789, 20 (2014). doi:10.1088/0004-637X/789/1/20

    Article  ADS  Google Scholar 

  • V.V. Akimov, P. Ambrož, A.V. Belov, A. Berlicki, I.M. Chertok et al., Evidence for prolonged acceleration based on a detailed analysis of the long-duration solar gamma-ray flare of June 15, 1991. Sol. Phys. 166, 107–134 (1996)

    Article  ADS  Google Scholar 

  • A. Aran, B. Sanahuja, D. Lario, SOLPENCO: a solar particle engineering code. Adv. Space Res. 37, 1240–1246 (2006). doi:10.1016/j.asr.2005.09.019

    Article  ADS  Google Scholar 

  • M.J. Aschwanden, Particle acceleration and kinematics in solar flares. Space Sci. Rev. 101, 1–227 (2002)

    Article  ADS  Google Scholar 

  • H. Aurass, F. Landini, G. Poletto, Coronal current sheet signatures during the 17 May 2002 CME-flare. Astron. Astrophys. 506, 901–911 (2009). doi:10.1051/0004-6361/200912229

    Article  ADS  Google Scholar 

  • H.M. Bain, M.L. Mays, J.G. Luhmann, Y. Li, L.K. Jian, D. Odstrcil, Shock connectivity in the August 2010 and July 2012 solar energetic particle events inferred from observations and ENLIL modeling. Astrophys. J. 825, 1 (2016). doi:10.3847/0004-637X/825/1/1

    Article  ADS  Google Scholar 

  • C.C. Balch, Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6, S01001 (2008). doi:10.1029/2007SW000337

    Article  ADS  Google Scholar 

  • A.O. Benz, M. Battaglia, N. Vilmer, Location of decimetric pulsations in solar flares. Sol. Phys. 273, 363–375 (2011). doi:10.1007/s11207-011-9760-3

    Article  ADS  Google Scholar 

  • J.W. Bieber, W.H. Matthaeus, C.W. Smith, W. Wanner, M.B. Kallenrode, G. Wibberenz, Proton and electron mean free paths: the Palmer consensus revisited. Astrophys. J. 420, 294–306 (1994). doi:10.1086/173559

    Article  ADS  Google Scholar 

  • A. Buttighoffer, Solar electron beams associated with radio type III bursts: propagation channels observed by Ulysses between 1 and 4 AU. Astron. Astrophys. 335, 295–302 (1998)

    ADS  Google Scholar 

  • H.V. Cane, W.C. Erickson, N.P. Prestage, Solar flares, type III radio bursts, coronal mass ejections and energetic particles. J. Geophys. Res. Space Phys. 107, 1315 (2002). doi:10.1029/2001JA000320

    Article  ADS  Google Scholar 

  • H.V. Cane, D.V. Reames, T.T. von Rosenvinge, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. Space Phys. 93, 9555–9567 (1988). doi:10.1029/JA093iA09p09555

    Article  ADS  Google Scholar 

  • H.V. Cane, I.G. Richardson, T.T. von Rosenvinge, A study of solar energetic particle events of 1997–2006: their composition and associations. J. Geophys. Res. Space Phys. 115, A08101 (2010). doi:10.1029/2009JA014848

    Article  ADS  Google Scholar 

  • D. Caprioli, A.R. Pop, A. Spitkovsky, Simulations and theory of ion injection at non-relativistic collisionless shocks. Astrophys. J. Lett. 798, L28 (2015). doi:10.1088/2041-8205/798/2/L28

    Article  ADS  Google Scholar 

  • P.J. Cargill, L. Vlahos, G. Baumann, J.F. Drake, Å. Nordlund, Current fragmentation and particle acceleration in solar flares. Space Sci. Rev. 173, 223–245 (2012). doi:10.1007/s11214-012-9888-y

    Article  ADS  Google Scholar 

  • H. Carmichael, A process for flares. NASA Spec. Publ. 50, 451 (1964)

    ADS  Google Scholar 

  • I.M. Chertok, On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space. Astron. Nachr. 311, 379–381 (1990)

    Article  ADS  Google Scholar 

  • I.M. Chertok, V.V. Grechnev, N.S. Meshalkina, On the correlation between spectra of solar microwave bursts and proton fluxes near the Earth. Astron. Rep. 53, 1059–1069 (2009). doi:10.1134/S1063772909110110

    Article  ADS  Google Scholar 

  • C.M.S. Cohen, G.M. Mason, R.A. Mewaldt, M.E. Wiedenbeck, The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event. Astrophys. J. 793, 35 (2014). doi:10.1088/0004-637X/793/1/35

    Article  ADS  Google Scholar 

  • C.M.S. Cohen, R.A. Mewaldt, R.A. Leske, A.C. Cummings, E.C. Stone et al., New observations of heavy-ion-rich solar particle events from ACE. Geophys. Res. Lett. 26, 2697–2700 (1999). doi:10.1029/1999GL900560

    Article  ADS  Google Scholar 

  • S. Dalla, A. Balogh, S. Krucker, A. Posner, R. Müller-Mellin et al., Properties of high heliolatitude solar energetic particle events and constraints on models of acceleration and propagation. Geophys. Res. Lett. 30, 8035 (2003). doi:10.1029/2003GL017139

    Article  ADS  Google Scholar 

  • S. Dalla, M.S. Marsh, M. Battarbee, Solar energetic particle drifts and the energy dependence of 1 AU charge states. Astrophys. J. 834, 167 (2017). doi:10.3847/1538-4357/834/2/167

    Article  ADS  Google Scholar 

  • S. Dalla, M.S. Marsh, J. Kelly, T. Laitinen, Solar energetic particle drifts in the Parker spiral. J. Geophys. Res. Space Phys. 118, 5979–5985 (2013). doi:10.1002/jgra.50589

    Article  ADS  Google Scholar 

  • S. Dalla, M.S. Marsh, T. Laitinen, Drift-induced deceleration of solar energetic particles. Astrophys. J. 808, 62 (2015). doi:10.1088/0004-637X/808/1/62

    Article  ADS  Google Scholar 

  • S. Dalla, M.S. Marsh, P. Zelina, T. Laitinen, Time dependence of Fe/O ratio within a 3D solar energetic particle propagation model including drift. Astron. Astrophys. 598, A73 (2017). doi:10.1051/0004-6361/201628618

    Article  ADS  Google Scholar 

  • H. Debrunner, J.A. Lockwood, C. Barat, R. Buetikofer, J.P. Dezalay et al., Energetic neutrons, protons, and gamma rays during the 1990 May 24 solar cosmic-ray event. Astrophys. J. 479, 997–1011 (1997)

    Article  ADS  Google Scholar 

  • P. Démoulin, A. Vourlidas, M. Pick, A. Bouteille, Erratum: Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J. 754, 156 (2012a). doi:10.1088/0004-637X/754/2/156

    Article  ADS  Google Scholar 

  • P. Démoulin, A. Vourlidas, M. Pick, A. Bouteille, Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J. 750, 147 (2012b). doi:10.1088/0004-637X/750/2/147

    Article  ADS  Google Scholar 

  • M. Desai, J. Giacalone, Large gradual solar energetic particle events. Living Rev. Sol. Phys. 13, 3 (2016). doi:10.1007/s41116-016-0002-5

    Article  ADS  Google Scholar 

  • M. Dierckxsens, K. Tziotziou, S. Dalla, I. Patsou, M.S. Marsh et al., Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol. Phys. 290, 841–874 (2015). doi:10.1007/s11207-014-0641-4

    Article  ADS  Google Scholar 

  • R. DiFabio, Z. Guo, E. Möbius, B. Klecker, H. Kucharek, G.M. Mason, M. Popecki, Energy-dependent charge states and their connection with ion abundances in impulsive solar energetic particle events. Astrophys. J. 687, 623–634 (2008). doi:10.1086/591833

    Article  ADS  Google Scholar 

  • W. Dröge, Particle scattering by magnetic fields. Space Sci. Rev. 93, 121–151 (2000)

    Article  ADS  Google Scholar 

  • N. Dresing, R. Gómez-Herrero, B. Heber, A. Klassen, O. Malandraki et al., Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. Astron. Astrophys. 567, A27 (2014). doi:10.1051/0004-6361/201423789

    Article  ADS  Google Scholar 

  • W. Dröge, Energetic solar electron spectra and gamma-ray observations, in High Energy Solar Physics, ed. by R. Ramaty, N. Mandzhavidze, X.M. Hua. American Institute of Physics Conference Series, vol. 374 (1996), pp. 78–85

    Google Scholar 

  • W. Dröge, Y.Y. Kartavykh, B. Klecker, G.A. Kovaltsov, Anisotropic three-dimensional focused transport of solar energetic particles in the inner heliosphere. Astrophys. J. 709, 912–919 (2010). doi:10.1088/0004-637X/709/2/912

    Article  ADS  Google Scholar 

  • A.G. Emslie, B.R. Dennis, G.D. Holman, H.S. Hudson, Refinements to flare energy estimates: a followup to “Energy partition in two solar flare/CME events” by A. G. Emslie et al. J. Geophys. Res. Space Phys. 110, A11,103 (2005). doi:10.1029/2005JA011305

    Article  Google Scholar 

  • C.Y. Fan, M. Pick, R. Pyle, J.A. Simpson, D.R. Smith, Protons associated with centers of solar activity and their propagation in interplanetary magnetic field regions corotating with the Sun. J. Geophys. Res. Space Phys. 73, 1555–1582 (1968)

    Article  ADS  Google Scholar 

  • L. Fletcher, B.R. Dennis, H.S. Hudson, S. Krucker, K. Phillips et al., An observational overview of solar flares. Space Sci. Rev. 159, 19–106 (2011). doi:10.1007/s11214-010-9701-8

    Article  ADS  Google Scholar 

  • H.A. Garcia, Forecasting methods for occurrence and magnitude of proton storms with solar soft X-rays. Space Weather S02, 002 (2004). doi:10.1029/2003SW000001

    Google Scholar 

  • A. García-Rigo, M. Núñez, R. Qahwaji, O. Ashamari, P. Jiggens et al., Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations. J. Space Weather Space Clim. 6(27), A28 (2016). doi:10.1051/swsc/2016021

    Article  Google Scholar 

  • J. Giacalone, The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. Lett. 628, L37–L40 (2005). doi:10.1086/432510

    Article  ADS  Google Scholar 

  • R. Gómez-Herrero, N. Dresing, A. Klassen, B. Heber, D. Lario et al., Circumsolar energetic particle distribution on 2011 November 3. Astrophys. J. 799, 55 (2015). doi:10.1088/0004-637X/799/1/55

    Article  ADS  Google Scholar 

  • N. Gopalswamy, P. Mäkelä, S. Akiyama, S. Yashiro, H. Xie et al., Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J. 806, 8 (2015). doi:10.1088/0004-637X/806/1/8

    Article  ADS  Google Scholar 

  • N. Gopalswamy, S. Yashiro, A. Lara, M.L. Kaiser, B.J. Thompson et al., Large solar energetic particle events of cycle 23: a global view. Geophys. Res. Lett. 30, 8015 (2003). doi:10.1029/2002GL016435

    ADS  Google Scholar 

  • N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, E. Aguilar-Rodriguez et al., Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560–569 (2008). doi:10.1086/524765

    Article  ADS  Google Scholar 

  • M. Gordovskyy, P.K. Browning, E.P. Kontar, N.H. Bian, Effect of collisions and magnetic convergence on electron acceleration and transport in reconnecting twisted solar flare loops. Sol. Phys. 284, 489–498 (2013). doi:10.1007/s11207-012-0124-4

    Article  ADS  Google Scholar 

  • J.A. Grayson, S. Krucker, R.P. Lin, A statistical study of spectral hardening in solar flares and related solar energetic particle events. Astrophys. J. 707, 1588–1594 (2009). doi:10.1088/0004-637X/707/2/1588

    Article  ADS  Google Scholar 

  • P.C. Grigis, A.O. Benz, The spectral evolution of impulsive solar X-ray flares. Astron. Astrophys. 426, 1093–1101 (2004). doi:10.1051/0004-6361:20041367

    Article  ADS  Google Scholar 

  • J. Heerikhuisen, Y.E. Litvinenko, I.J.D. Craig, Proton acceleration in analytic reconnecting current sheets. Astrophys. J. 566, 512–520 (2002). doi:10.1086/337957

    Article  ADS  Google Scholar 

  • J. Heyvaerts, E.R. Priest, D.M. Rust, An emerging flux model for the solar flare phenomenon. Astrophys. J. 216, 123–137 (1977). doi:10.1086/155453

    Article  ADS  Google Scholar 

  • G.D. Holman, M.J. Aschwanden, H. Aurass, M. Battaglia, P.C. Grigis et al., Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107–166 (2011). doi:10.1007/s11214-010-9680-9

    Article  ADS  Google Scholar 

  • G.D. Holman, M.E. Pesses, Solar type II radio emission and the shock drift acceleration of electrons. Astrophys. J. 267, 837–843 (1983)

    Article  ADS  Google Scholar 

  • H. Hudson, J. Ryan, High-energy particles in solar flares. Annu. Rev. Astron. Astrophys. 33, 239–282 (1995). doi:10.1146/annurev.aa.33.090195.001323

    Article  ADS  Google Scholar 

  • P. Jiggens, M.A. Chavy-Macdonald, G. Santin, A. Menicucci, H. Evans, A. Hilgers, The magnitude and effects of extreme solar particle events. J. Space Weather Space Clim. 4(27), A20 (2014). doi:10.1051/swsc/2014017

    Article  Google Scholar 

  • F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991). doi:10.1007/BF01206003

    Article  ADS  Google Scholar 

  • S. Kahler, Solar flares and coronal mass ejections. Annu. Rev. Astron. Astrophys. 30, 113–141 (1992)

    Article  ADS  Google Scholar 

  • S.W. Kahler, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. Space Phys. 87, 3439–3448 (1982). doi:10.1029/JA087iA05p03439

    Article  ADS  Google Scholar 

  • S.W. Kahler, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. Space Phys. 106, 20,947–20,956 (2001). doi:10.1029/2000JA002231

    Article  ADS  Google Scholar 

  • S.W. Kahler, E.W. Cliver, H.V. Cane, R.E. McGuire, R.G. Stone, N.R. Sheeley, Solar filament eruptions and energetic particle events. Astrophys. J. 302, 504–510 (1986)

    Article  ADS  Google Scholar 

  • S.W. Kahler, E.W. Cliver, A.G. Ling, Validating the proton prediction system (PPS). J. Atmos. Sol.-Terr. Phys. 69, 43–49 (2007). doi:10.1016/j.jastp.2006.06.009

    Article  ADS  Google Scholar 

  • M.B. Kallenrode, Particle propagation in the inner heliosphere. J. Geophys. Res. Space Phys. 98, 19 (1993). doi:10.1029/93JA02079

    Google Scholar 

  • M.B. Kallenrode, G. Wibberenz, Particle injection following solar flares on 1980 May 28 and June 8—evidence for different injection time histories in impulsive and gradual events? Astrophys. J. 376, 787–796 (1991)

    Article  ADS  Google Scholar 

  • G. Kanbach, D.L. Bertsch, C.E. Fichtel, R.C. Hartman, S.D. Hunter et al., Detection of a long-duration solar gamma-ray flare on June 11, 1991 with EGRET on COMPTON-GRO. Astron. Astrophys. Suppl. Ser. 97, 349–353 (1993)

    ADS  Google Scholar 

  • S.R. Kane, E.L. Chupp, D.J. Forrest, G.H. Share, E. Rieger, Rapid acceleration of energetic particles in the 1982 February 8 solar flare. Astrophys. J. Lett. 300, L95–L98 (1986). doi:10.1086/184610

    Article  ADS  Google Scholar 

  • Y.Y. Kartavykh, W. Dröge, B. Klecker, G.M. Mason, E. Möbius et al., Evidence of a two-temperature source region in the 3He-rich solar energetic particle event of 2000 May 1. Astrophys. J. 671, 947–954 (2007). doi:10.1086/522687

    Article  ADS  Google Scholar 

  • A.L. Kiplinger, Comparative studies of hard X-ray spectral evolution in solar flares with high-energy proton events observed at Earth. Astrophys. J. 453, 973–986 (1995)

    Article  ADS  Google Scholar 

  • A. Klassen, N. Dresing, R. Gómez-Herrero, B. Heber, R. Müller-Mellin, Unexpected spatial intensity distributions and onset timing of solar electron events observed by closely spaced STEREO spacecraft. Astron. Astrophys. 593, A31 (2016). doi:10.1051/0004-6361/201628734

    Article  ADS  Google Scholar 

  • B. Klecker, H. Kunow, H.V. Cane, S. Dalla, B. Heber et al., Energetic particle observations. Space Sci. Rev. 123, 217–250 (2006). doi:10.1007/s11214-006-9018-9

    Article  ADS  Google Scholar 

  • B. Klecker, E. Möbius, M.A. Popecki, Ionic charge states of solar energetic particles: a clue to the source. Space Sci. Rev. 130, 273–282 (2007). doi:10.1007/s11214-007-9207-1

    Article  ADS  Google Scholar 

  • K.L. Klein, N. Agueda, R. Bütikofer, On the origin of relativistic solar particle events: interplanetary transport modelling and radio emission, in 34th International Cosmic Ray Conference, ed. by R. Caballero, J.C. D’Olivo, G. Medina-Tanco, L. Nellen, F.A. Sánchez, J.F. Valdés-Galicia. Proceedings of Science (2015), pp. 121–124

    Google Scholar 

  • K.L. Klein, S. Krucker, G. Lointier, A. Kerdraon, Open magnetic flux tubes in the corona and the transport of solar energetic particles. Astron. Astrophys. 486, 589–596 (2008). doi:10.1051/0004-6361:20079228

    Article  ADS  Google Scholar 

  • K.L. Klein, S. Masson, C. Bouratzis, V. Grechnev, A. Hillaris, P. Preka-Papadema, The relativistic solar particle event of 2005 January 20: origin of delayed particle acceleration. Astron. Astrophys. 572, A4 (2014). doi:10.1051/0004-6361/201423783

    Article  Google Scholar 

  • K.L. Klein, G. Trottet, A. Klassen, Energetic particle acceleration and propagation in strong CME-less flares. Sol. Phys. 263, 185–208 (2010). doi:10.1007/s11207-010-9540-5

    Article  ADS  Google Scholar 

  • K.L. Klein, G. Trottet, S. Samwel, O. Malandraki, Particle acceleration and propagation in strong flares without major solar energetic particle events. Sol. Phys. 269, 309–333 (2011). doi:10.1007/s11207-011-9710-0

    Article  ADS  Google Scholar 

  • B. Kliem, M. Karlický, A.O. Benz, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715–728 (2000)

    ADS  Google Scholar 

  • L. Kocharov, G.A. Kovaltsov, J. Torsti, V.M. Ostryakov, Evaluation of solar energetic Fe charge states: effect of proton-impact ionization. Astron. Astrophys. 357, 716–724 (2000)

    ADS  Google Scholar 

  • L.G. Kocharov, G.A. Kovaltsov, G.E. Kocharov, E.I. Chuikin, I.G. Usoskin et al., Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: continuous acceleration of relativistic particles. Sol. Phys. 150, 267–283 (1994)

    Article  ADS  Google Scholar 

  • G.A. Kovaltsov, I.G. Usoskin, E.W. Cliver, W.F. Dietrich, A.J. Tylka, Fluence ordering of solar energetic proton events using cosmogenic radionuclide data. Sol. Phys. 289, 4691–4700 (2014). doi:10.1007/s11207-014-0606-7

    Article  ADS  Google Scholar 

  • K.A. Kozarev, R.M. Evans, N.A. Schwadron, M.A. Dayeh, M. Opher et al., Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. Astrophys. J. 778, 43 (2013). doi:10.1088/0004-637X/778/1/43

    Article  ADS  Google Scholar 

  • D. Krauss-Varban, Particle acceleration in shocks, in Heliophysics: Space Storms and Radiation: Causes and Effects, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2010), pp. 209–231

    Chapter  Google Scholar 

  • S. Krucker, M. Battaglia, P.J. Cargill, L. Fletcher, H.S. Hudson et al., Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155–208 (2008). doi:10.1007/s00159-008-0014-9

    Article  ADS  Google Scholar 

  • S. Krucker, G.J. Hurford, A.L. MacKinnon, A.Y. Shih, R.P. Lin, Coronal \(\gamma \)-ray bremsstrahlung from solar flare-accelerated electrons. Astrophys. J. Lett. 678, L63–L66 (2008b). doi:10.1086/588381

    Article  ADS  Google Scholar 

  • S. Krucker, E.P. Kontar, S. Christe, R.P. Lin, Solar flare electron spectra at the sun and near the Earth. Astrophys. J. Lett. 663, L109–L112 (2007). doi:10.1086/519373

    Article  ADS  Google Scholar 

  • T. Laitinen, A. Kopp, F. Effenberger, S. Dalla, M.S. Marsh, Solar energetic particle access to distant longitudes through turbulent field-line meandering. Astron. Astrophys. 591, A18 (2016). doi:10.1051/0004-6361/201527801

    Article  ADS  Google Scholar 

  • D. Lario, A. Aran, R. Gómez-Herrero, N. Dresing, B. Heber et al., Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 767, 41 (2013). doi:10.1088/0004-637X/767/1/41

    Article  ADS  Google Scholar 

  • D. Lario, B. Sanahuja, A.M. Heras, Energetic particle events: efficiency of interplanetary shocks as \(50~\mbox{keV} < \mathrm{E} < 100~\mbox{MeV}\) proton accelerators. Astrophys. J. 509, 415–434 (1998). doi:10.1086/306461

    Article  ADS  Google Scholar 

  • M.A. Lee, R.A. Mewaldt, J. Giacalone, Shock acceleration of ions in the Heliosphere. Space Sci. Rev. 173, 247–281 (2012). doi:10.1007/s11214-012-9932-y

    Article  ADS  Google Scholar 

  • P.C. Liewer, M. Neugebauer, T. Zurbuchen, Characteristics of active-region sources of solar wind near solar maximum. Sol. Phys. 223, 209–229 (2004). doi:10.1007/s11207-004-1105-z

    Article  ADS  Google Scholar 

  • J. Lin, N.A. Murphy, C. Shen, J.C. Raymond, K.K. Reeves et al., Review on current sheets in CME development: theories and observations. Space Sci. Rev. 194, 237–302 (2015). doi:10.1007/s11214-015-0209-0

    Article  ADS  Google Scholar 

  • J.G. Luhmann, S.A. Ledvina, D. Odstrcil, M.J. Owens, X.P. Zhao et al., Cone model-based SEP event calculations for applications to multipoint observations. Adv. Space Res. 46, 1–21 (2010). doi:10.1016/j.asr.2010.03.011

    Article  ADS  Google Scholar 

  • W.B. Manchester IV., T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev et al., Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys. J. 622, 1225–1239 (2005). doi:10.1086/427768

    Article  ADS  Google Scholar 

  • G. Mann, A. Klassen, Electron beams generated by shock waves in the solar corona. Astron. Astrophys. 441, 319–326 (2005). doi:10.1051/0004-6361:20034396

    Article  ADS  Google Scholar 

  • C. Marqué, A. Posner, K.L. Klein, Solar energetic particles and radio-silent fast coronal mass ejections. Astrophys. J. 642, 1222–1235 (2006)

    Article  ADS  Google Scholar 

  • M.S. Marsh, S. Dalla, M. Dierckxsens, T. Laitinen, N.B. Crosby SPARX: a modeling system for Solar Energetic Particle Radiation Space Weather forecasting. Space Weather 13, 386–394 (2015). doi:10.1002/2014SW001120

    Article  ADS  Google Scholar 

  • M.S. Marsh, S. Dalla, J. Kelly, T. Laitinen, Drift-induced perpendicular transport of solar energetic particles. Astrophys. J. 774, 4 (2013). doi:10.1088/0004-637X/774/1/4

    Article  ADS  Google Scholar 

  • G.M. Mason, M.I. Desai, C.M.S. Cohen, R.A. Mewaldt, E.C. Stone, J.R. Dwyer, The role of interplanetary scattering in western hemisphere large solar energetic particle events. Astrophys. J. Lett. 647, L65–L68 (2006). doi:10.1086/507469

    Article  ADS  Google Scholar 

  • G.M. Mason, J.E. Mazur, J.R. Dwyer, 3He enhancements in large solar energetic particle events. Astrophys. J. Lett. 525, L133–L136 (1999)

    Article  ADS  Google Scholar 

  • S. Masson, S.K. Antiochos, C.R. DeVore, A model for the escape of solar-flare-accelerated particles. Astrophys. J. 771, 82 (2013). doi:10.1088/0004-637X/771/2/82

    Article  ADS  Google Scholar 

  • J.E. Mazur, G.M. Mason, J.R. Dwyer, J. Giacalone, J.R. Jokipii, E.C. Stone, Interplanetary magnetic field line mixing deduced from impulsive solar flare particles. Astrophys. J. 532, L79–L82 (2000)

    Article  ADS  Google Scholar 

  • J.E. Mazur, G.M. Mason, M.D. Looper, R.A. Leske, R.A. Mewaldt, Charge states of solar energetic particles using the geomagnetic cutoff technique: SAMPEX measurements in the 6 November 1997 solar particle event. Geophys. Res. Lett. 26, 173–176 (1999). doi:10.1029/1998GL900075

    Article  ADS  Google Scholar 

  • K.G. McCracken, High frequency of occurrence of large solar energetic particle events prior to 1958 and a possible repetition in the near future. Space Weather 5, 07004 (2007). doi:10.1029/2006SW000295

    Article  ADS  Google Scholar 

  • K.G. McCracken, H. Moraal, M.A. Shea, The high-energy impulsive ground-level enhancement. Astrophys. J. 761, 101 (2012). doi:10.1088/0004-637X/761/2/101

    Article  ADS  Google Scholar 

  • R.A. Mewaldt, C.M.S. Cohen, D.K. Haggerty, G.M. Mason, M.L. Looper et al., Radiation risks from large solar energetic particle events, in Turbulence and Nonlinear Processes in Astrophysical Plasmas, ed. by D. Shaikh, G.P. Zank. American Institute of Physics Conference Series, vol. 932 (2007), pp. 277–282. doi:10.1063/1.2778975

    Google Scholar 

  • R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, The Source Material for Large Solar Energetic Particle Events. American Geophysical Union Geophysical Monograph Series, vol. 165 (2006). Washington D.C.

    Google Scholar 

  • R.A. Mewaldt, G.M. Mason, C.M.S. Cohen, R. Gómez-Herrero, D.K. Haggerty et al., Evolution of suprathermal seed particle and solar energetic particle abundances, in Physics of the Heliosphere: A 10 Year Retrospective, ed. by J. Heerikhuisen, G. Li, N. Pogorelov, G. Zank. American Institute of Physics Conference Series, vol. 1436 (2012), pp. 206–211. doi:10.1063/1.4723609

    Google Scholar 

  • J.A. Miller, P.J. Cargill, A.G. Emslie, G.D. Holman, B.R. Dennis et al., Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. Space Phys. 102, 14,631–14,660 (1997). doi:10.1029/97JA00976

    Article  ADS  Google Scholar 

  • L.I. Miroshnichenko, Solar Cosmic Rays (Kluwer Acad. Publ., Dordrecht/Boston/London, 2001)

    Book  Google Scholar 

  • R. Miteva, K.L. Klein, O. Malandraki, G. Dorrian, Solar energetic particle events in the 23rd solar cycle: interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Sol. Phys. 282, 579–613 (2013). doi:10.1007/s11207-012-0195-2

    Article  ADS  Google Scholar 

  • E. Möbius, M. Popecki, B. Klecker, L.M. Kistler, A. Bogdanov et al., Energy dependence of the ionic charge state distribution during the November 1997 solar energetic particle event. Geophys. Res. Lett. 26, 145–148 (1999). doi:10.1029/1998GL900131

    Article  ADS  Google Scholar 

  • H. Moraal, K.G. McCracken, The time structure of ground level enhancements in solar cycle 23. Space Sci. Rev. 171, 85–95 (2012). doi:10.1007/s11214-011-9742-7

    Article  ADS  Google Scholar 

  • M. Núñez, Predicting solar energetic proton events (E > 10 MeV). Space Weather 9, 07003 (2011). doi:10.1029/2010SW000640

    Article  Google Scholar 

  • M. Pesce-Rollins, N. Omodei, V. Petrosian, W. Liu, F. Rubio da Costa et al., First detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare. Astrophys. J. Lett. 805, L15 (2015). doi:10.1088/2041-8205/805/2/L15

    Article  ADS  Google Scholar 

  • V. Petrosian, Stochastic acceleration by turbulence. Space Sci. Rev. 173, 535–556 (2012). doi:10.1007/s11214-012-9900-6

    Article  ADS  Google Scholar 

  • J. Pomoell, R. Vainio, R. Kissmann, MHD modeling of coronal large-amplitude waves related to CME lift-off. Sol. Phys. 253, 249–261 (2008). doi:10.1007/s11207-008-9186-8

    Article  ADS  Google Scholar 

  • A. Posner, Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5, 05001 (2007). doi:10.1029/2006SW000268

    Article  ADS  Google Scholar 

  • R. Ramaty, N. Mandzhavidze, B. Kozlovsky, J.G. Skibo, Acceleration in solar flares: interacting particles versus interplanetary particles. Adv. Space Res. 13(9), 275–284 (1993). doi:10.1016/0273-1177(93)90490-3

    Article  ADS  Google Scholar 

  • J.C. Raymond, S. Krucker, R.P. Lin, V. Petrosian, Observational aspects of particle acceleration in large solar flares. Space Sci. Rev. 173, 197–221 (2012). doi:10.1007/s11214-012-9897-x

    Article  ADS  Google Scholar 

  • D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999). doi:10.1023/A:1005105831781

    Article  ADS  Google Scholar 

  • R. Reinhard, G. Wibberenz, Propagation of flare protons in the solar atmosphere. Sol. Phys. 36, 473–494 (1974)

    Article  ADS  Google Scholar 

  • I.G. Richardson, T.T.von Rosenvinge, H.V. Cane, E.R. Christian, C.M.S. Cohen et al., >25 MeV proton events observed by the High Energy Telescopes on the STEREO A and B spacecraft and/or at Earth during the first seven years of the STEREO mission. Sol. Phys. 289, 3059–3107 (2014). doi:10.1007/s11207-014-0524-8

    Article  ADS  Google Scholar 

  • E.C. Roelof, Propagation of solar cosmic rays in the interplanetary magnetic field, in Lectures in High-Energy Astrophysics, ed. by H. Ögelmann, J. Wayland. NASA, vol. SP-199 (1969), pp. 111–136

    Google Scholar 

  • A.P. Rouillard, I. Plotnikov, R.F. Pinto, M. Tirole, M. Lavarra et al., Deriving the properties of coronal pressure fronts in 3D: application to the 2012 May 17 ground level enhancement. Astrophys. J. 833, 45 (2016). doi:10.3847/1538-4357/833/1/45

    Article  ADS  Google Scholar 

  • A.P. Rouillard, N.R. Sheeley, A. Tylka, A. Vourlidas, C.K. Ng et al., The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J. 752, 44 (2012). doi:10.1088/0004-637X/752/1/44

    Article  ADS  Google Scholar 

  • D. Ruffolo, Effect of adiabatic deceleration on the focused transport of solar cosmic rays. Astrophys. J. 442, 861–874 (1995). doi:10.1086/175489

    Article  ADS  Google Scholar 

  • P. Saint-Hilaire, N. Vilmer, A. Kerdraon, A decade of solar type III radio bursts observed by the Nançay Radioheliograph 1998–2008. Astrophys. J. 762, 60 (2013). doi:10.1088/0004-637X/762/1/60

    Article  ADS  Google Scholar 

  • A. Sandroos, R. Vainio, Particle acceleration at shocks propagating in inhomogeneous magnetic fields. Astron. Astrophys. 455, 685–695 (2006). doi:10.1051/0004-6361:20054754

    Article  ADS  MATH  Google Scholar 

  • C.J. Schrijver, M.L. DeRosa, Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165–200 (2003). doi:10.1023/A:1022908504100

    Article  ADS  Google Scholar 

  • N.A. Schwadron, L. Townsend, K. Kozarev, M.A. Dayeh, F. Cucinotta et al., Earth–Moon–Mars radiation environment module framework. Space Weather 8, S00E02 (2010). doi:10.1029/2009SW000523

    Google Scholar 

  • G. Souvatzoglou, A. Papaioannou, H. Mavromichalaki, J. Dimitroulakos, C. Sarlanis, Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: introducing GLE Alert Plus. Space Weather 12, 633–649 (2014). doi:10.1002/2014SW001102

    Article  ADS  Google Scholar 

  • L. Sui, G.D. Holman, B.R. Dennis, Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612, 546–556 (2004). doi:10.1086/422515

    Article  ADS  Google Scholar 

  • B. Tan, H. Mészárosová, M. Karlický, G. Huang, C. Tan, Microwave type III pair bursts in solar flares. Astrophys. J. 819, 42 (2016). doi:10.3847/0004-637X/819/1/42

    Article  ADS  Google Scholar 

  • J.K. Thalmann, Y. Su, M. Temmer, A.M. Veronig, The confined X-class flares of solar active region 2192. Astrophys. J. Lett. 801, L23 (2015). doi:10.1088/2041-8205/801/2/L23

    Article  ADS  Google Scholar 

  • G. Trottet, S. Samwel, K.L. Klein, T. Dudok de Wit, R. Miteva, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol. Phys. 290, 819–839 (2015). doi:10.1007/s11207-014-0628-1

    Article  ADS  Google Scholar 

  • G. Trottet, N. Vilmer, C. Barat, J.P. Dezalay, R. Talon et al., Temporal and spectral characteristics of the June 11, 1991 gamma-ray flare. Astron. Astrophys. Suppl. Ser. 97, 337–339 (1993)

    ADS  Google Scholar 

  • A.J. Tylka, M.A. Lee, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646, 1319–1334 (2006). doi:10.1086/505106

    Article  ADS  Google Scholar 

  • A.J. Tylka, O.E. Malandraki, G. Dorrian, Y.K. Ko, R.G. Marsden et al., Initial Fe/O enhancements in large, gradual, solar energetic particle events: observations from Wind and Ulysses. Sol. Phys. 285, 251–267 (2013). doi:10.1007/s11207-012-0064-z

    Article  ADS  Google Scholar 

  • R. Vainio, L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger et al., Dynamics of the Earth’s particle radiation environment. Space Sci. Rev. 147, 187–231 (2009). doi:10.1007/s11214-009-9496-7

    Article  ADS  Google Scholar 

  • M.A.I. Van Hollebeke, L.S. Ma Sung, F.B. McDonald, The variation of solar proton energy spectra and size distribution with heliolongitude. Sol. Phys. 41, 189–223 (1975). doi:10.1007/BF00152967

    Article  ADS  Google Scholar 

  • N. Vilmer, A.L. MacKinnon, G.J. Hurford, Properties of energetic ions in the solar atmosphere from \(\gamma \)-ray and neutron observations. Space Sci. Rev. 159, 167–224 (2011). doi:10.1007/s11214-010-9728-x

    Article  ADS  Google Scholar 

  • Y. Wang, J. Zhang, A comparative study between eruptive X-class flares associated with coronal mass ejections and confined X-class flares. Astrophys. J. 665, 1428–1438 (2007). doi:10.1086/519765

    Article  ADS  Google Scholar 

  • Y.M. Wang, M. Pick, G.M. Mason, Coronal holes, jets, and the origin of 3He-rich particle events. Astrophys. J. 639, 495–509 (2006). doi:10.1086/499355

    Article  ADS  Google Scholar 

  • A. Warmuth, G. Mann, H. Aurass, Modelling shock drift acceleration of electrons at the reconnection outflow termination shock in solar flares. Observational constraints and parametric study. Astron. Astrophys. 494, 677–691 (2009). doi:10.1051/0004-6361:200810101

    Article  ADS  Google Scholar 

  • M.E. Wiedenbeck, G.M. Mason, C.M.S. Cohen, N.V. Nitta, R. Gómez-Herrero, D.K. Haggerty, Observations of solar energetic particles from 3He-rich events over a wide range of heliographic longitude. Astrophys. J. 762, 54 (2013). doi:10.1088/0004-637X/762/1/54

    Article  ADS  Google Scholar 

  • M.A. Xapsos, G.P. Summers, J.L. Barth, E.G. Stassinopoulos, E.A. Burke, Probability model for worst case solar proton event fluences. IEEE Trans. Nucl. Sci. 46, 1481–1485 (1999). doi:10.1109/23.819111

    Article  ADS  Google Scholar 

  • P. Zelina, S. Dalla, C.M.S. Cohen, R.A. Mewaldt, Time evolution of elemental ratios in solar energetic particle events. Astrophys. J. 835, 71 (2017). doi:10.3847/1538-4357/aa5274

    Article  ADS  Google Scholar 

  • M. Zhang, G. Qin, H. Rassoul, Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. Astrophys. J. 692, 109–132 (2009). doi:10.1088/0004-637X/692/1/109

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to ISSI for organizing the workshop on the scientific foundations of space weather, as well as a number of earlier team meetings that helped us shape our ideas on solar energetic particles. S.D. acknowledges support from the UK Science and Technology Facilities Council (STFC) (grant ST/M00760X/1) and the Leverhulme Trust (grant RPG-2015-094). Research at Paris Observatory received funding from the French space agency CNES and the European Union’s Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Ludwig Klein.

Additional information

The Scientific Foundation of Space Weather

Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig

Further affiliations for K.-L. Klein: PSL Research University, Univ. P & M Curie, Univ. Paris-Diderot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, KL., Dalla, S. Acceleration and Propagation of Solar Energetic Particles. Space Sci Rev 212, 1107–1136 (2017). https://doi.org/10.1007/s11214-017-0382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0382-4

Keywords

Navigation