Skip to main content
Log in

Photophysical Properties of Upconverting Nanoparticle–Phthalocyanine Complexes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Interaction between upconverting nanoparticles and aluminum octacarboxyphthalocyanine was studied. The efficiency of non-radiative energy transfer from the nanoparticles to phthalocyanine increased with the number of phthalocyanine molecules adsorbed on the nanoparticle, but only up to a certain limit. Further increase in the phthalocyanine concentration resulted in a decrease of its sensitized fluorescence due to the dimerization of dye molecules on the nanoparticle surface. When subjected to infrared irradiation, phthalocyanine molecules in the hybrid complex generated singlet oxygen. The observed effects are of interest in regard to the targeted search for new components of efficient third-generation hybrid photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(Al)Pc:

(aluminum) phthalocyanine

PDT:

photodynamic therapy

RNO:

p-nitrosodimethylaniline

ROS:

reactive oxygen species

TCSPC:

time-correlated single photon counting

(UC)NP:

(upconverting) nanoparticle

References

  1. Chen, G., Qiu, H., Prasad, P. N., and Chen, X. (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics, Chem. Rev., 114, 5161–5214; doi: https://doi.org/10.1021/cr400425h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Auzel, F. (2004) Upconversion and anti-stokes processes with f and d ions in solids, Chem. Rev., 104, 139–173; doi: https://doi.org/10.1021/cr020357g.

    Article  CAS  PubMed  Google Scholar 

  3. Wurth, C., Kaiser, M., Wilhelm, S., Grauel, B., Hirsch, T., and Resch-Genger, U. (2017) Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents, Nanoscale. Royal Soc. Chem., 9, 4283–4294; doi: https://doi.org/10.1039/C7NR00092H.

    CAS  Google Scholar 

  4. Kuznetsova, Yu. Yu. (2013) Transfer of electron excitation in up-converting nanoparticles containing rare-earth ions, Izvest. Samarskogo Nauch. Tsentra RAN, 15, 112–115.

    Google Scholar 

  5. Chen, Y., and Liang, H. (2014) Applications of quantum dots with upconverting luminescence in bioimaging, J. Photochem. Photobiol. B Biol., 135, 23–32; doi: https://doi.org/10.1016/j.jphotobiol.2014.04.003.

    Article  CAS  Google Scholar 

  6. Generalova, A. N., Chichkov, B. N., and Khaydukov, E. V. (2017) Multicomponent nanocrystals with anti-stokes luminescence as contrast agents for modern imaging techniques, Adv. Colloid Interface Sci., 245, 1–19; doi: https://doi.org/10.1016/j.cis.2017.05.006.

    Article  CAS  PubMed  Google Scholar 

  7. Fong, L. S. E., Chatterjee, D. K., and Zhang, Y. (2009) Use of upconverting nanoparticles in photodynamic therapy (URL: http://www.nus.edu.sg).

    Google Scholar 

  8. Wang, C., Tao, H., Cheng, L., and Liu, Z. (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles, Biomaterials, 32, 6145–6154; doi: https://doi.org/10.1016/j.biomaterials.2011.05.007.

    Article  CAS  PubMed  Google Scholar 

  9. Rocheva, V. V., Sholina, N. V., Derevyashkin, S. P., Generalova, A. N., Nechaev, A. V., Khochenkov, D. A., Semchishen, V. A., Khaidukov, E. V., Stepanova, E. V., and Panchenko, V. Ya. (2016) Luminescent diagnostics of tumors using up-conversion nanoparticles, Al’manakh Klin. Med., 44, 227–233; doi: https://doi.org/10.18786/2072-0505-2016-44-2-227-233.

    Article  Google Scholar 

  10. Dougherty, T. J. (1992) Photochemistry in the treatment of cancer, Adv. Photochem., 17, 275–311.

    CAS  Google Scholar 

  11. Spiller, W., Kliesch, H., Wohrle, D., Hackbarth, S., Roder, B., and Schnurpfeil, G. (1998) Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions, Porphyr. Phthalocyanines, 2, 145–158; doi: https://doi.org/10.1002/(SICI)1099-1409(199803/04)2:2<145::AID-JPP60>3.0.CO;2-2.

    Article  CAS  Google Scholar 

  12. Ishii, K. (2012) Functional singlet oxygen generators based on phthalocyanines, Coord. Chem. Rev., 256, 1556–1568, doi: https://doi.org/10.1016/j.ccr.2012.03.022.

    Article  CAS  Google Scholar 

  13. Taquet, J.-P., Frochot, C., Manneville, V., and Barberi-Heyob, M. (2007) Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy, Curr. Med. Chem., 14, 1673–1687; doi: https://doi.org/10.2174/092986707780830970.

    Article  CAS  PubMed  Google Scholar 

  14. Cakir, D., Goksel, M., Cakir, V., Durmus, M., Biyiklioglu, Z., and Kantekin, H. (2015) Amphiphilic zinc phthalocyanine photosensitizers: synthesis, photophysicochemical properties and in vitro studies for photodynamic therapy, Dalt. Trans., 44, 9646–9658; doi: https://doi.org/10.1039/C5DT00747J.

    Article  CAS  Google Scholar 

  15. Ribeiro, A. P. D., Andrade, M. C., Bagnato, V. S., Vergani, C. E., Primo, F. L., Tedesco, A. C., and Pavarina, A. C. (2015) Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions, Lasers Med. Sci., 30, 549–559; doi: https://doi.org/10.1007/s10103-013-1354-x.

    Article  PubMed  Google Scholar 

  16. Strakhovskaya, M. G., Antonenko, Yu. N., Pashkovskaya, A. A., Kotova, E. A., Kireev, V., Zhukhovitskii, V. G., Kuznetsova, N. A., Yuzhakova, O. A., Negrimovskii, V. M., and Rubin, A. B. (2009) Electrostatic binding of substituted metal phthalocyanines to enterobacteria cells: its role in photodynamic inactivation, Biochemistry (Moscow), 74, 1305–1314; doi: https://doi.org/10.1134/S0006297909120025.

    Article  CAS  Google Scholar 

  17. Suchan, A., Nackiewicz, J., Hnatejko, Z., Waclawek, W., and Lis, S. (2009) Spectral studies of zinc octacarboxy-phthalocyanine aggregation, Dyes Pigments, 80, 239–244; doi: https://doi.org/10.1016/j.dyepig.2008.06.009.

    Article  CAS  Google Scholar 

  18. Makarov, D. A., Kuznetsova, N. A., Yuzhakova, O. A., Savvina, L. P., Kaliya, O. L., Lukyanets, E. A., Negrimovskii, V. M., and Strakhovskaya, M. G. (2009) Effect of the degree of substitution on the physicochemical properties and photodynamic activity of zinc and aluminum phthalocyanine polycations, Russ. J. Phys. Chem. A, 83, 1044–1050; doi: https://doi.org/10.1134/S0036024409060326.

    Article  CAS  Google Scholar 

  19. Mackenzie, L. E., Goode, J. A., Vakurov, A., Nampi, P. P., Saha, S., Jose, G., and Millner, P. A. (2018) The theoretical molecular weight of NaYF4:RE upconversion nanoparticles, Sci. Rep. Springer US, 8, 1–11; doi: https://doi.org/10.1038/s41598-018-19415-w.

    CAS  Google Scholar 

  20. Kraljic, I., and Moshni, S. E. (1978) A new method for the detection of singlet oxygen in aqueous solutions, Photochem. Photobiol., 28, 577–581; doi: https://doi.org/10.1111/j.1751-1097.1978.tb06972.x.

    Article  CAS  Google Scholar 

  21. Gvozdev, D. A., Maksimov, E. G., Strakhovskaya, M. G., Ivanov, M. V., Pashchenko, V. Z., and Rubin, A. B. (2017) The effect of ionic strength on spectral properties of quantum dots and aluminum phthalocyanines, Nanothech. Russ., 12, 73–85; doi: https://doi.org/10.1134/S1995078017010050.

    Article  CAS  Google Scholar 

  22. Kadish, K. M., Smith, K. M., and Guilard, R. (2003) The Porphyrin Handbook. Vol. 17. Phthalocyanines: Properties and Materials, Academic Press, San Diego.

    Google Scholar 

  23. Goncalves, P. J., Correa, D. S., Franzen, P. L., De Boni, L., Almeida, L. M., Mendonca, C. R., Borissevitch, I. E., and Zilio, S. C. (2013) Effect of interaction with micelles on the excited-state optical properties of zinc porphyrins and J-aggregates formation, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 112, 309–317; doi: https://doi.org/10.1016/j.saa.2013.04.065.

    Article  CAS  Google Scholar 

  24. Maiti, N. C., Mazumdar, S., and Periasamy, N. (1998) J- and H-aggregates of porphyrin-surfactant complexes: time-resolved fluorescence and other spectroscopic studies, J. Phys. Chem., 102, 1528–1538; doi: https://doi.org/10.1021/jp9723372.

    Article  CAS  Google Scholar 

  25. Gandini, S. C. M., Yushmanov, V. E., Borissevitch, I. E., and Tabak, M. (1999) Interaction of the tetra(4-sulfonatophenyl)porphyrin with ionic surfactants: aggregation and location in micelles, Langmuir, 15, 6233–6243; doi: https://doi.org/10.1021/la990108w.

    Article  CAS  Google Scholar 

  26. Bednarkiewicz, A., Nyk, M., Samoc, M., and Strek, W. (2010) Up-conversion FRET from Er3+/Yb3+: NaYF4 nanophosphor to CdSe quantum dots, J. Phys. Chem., 114, 17535–17541; doi: https://doi.org/10.1021/jp106120d.

    CAS  Google Scholar 

  27. Watkins, Z., Uddin, I., Britton, J., and Nyokong, T. (2017) Characterization of conjugates of NaYF4:Yb,Er,Gd upconversion nanoparticle with aluminum phthalocyanines, J. Mol. Struct., 1130, 128–137; doi: https://doi.org/10.1016/j.molstruc.2016.10.011.

    Article  CAS  Google Scholar 

  28. Lakowicz, J. R. (2006) Principles of Fluorescence Spectroscopy, 3rd Edn., Springer, New York.

    Book  Google Scholar 

  29. Su, Q., Feng, W., Yang, D., and Li, F. (2017) Resonance energy transfer in upconversion nanoplatforms for selective biodetection, Acc. Chem. Res., 50, 32–40; doi: https://doi.org/10.1021/acs.accounts.6b00382.

    Article  CAS  PubMed  Google Scholar 

  30. Drees, C., Raj, A. N., Kurre, R., Busch, K. B., Haase, M., and Piehler, J. (2016) Engineered upconversion nanoparticles for resolving protein interactions inside living cells, Angew. Chemie Int. Ed., 55, 11668–11672; doi: https://doi.org/10.1002/anie.201603028.

    Article  CAS  Google Scholar 

  31. Resch-Genger, U., and Gorris, H. H. (2017) Perspectives and challenges of photon-upconversion nanoparticles. Part I: Routes to brighter particles and quantitative spectroscopic studies, Anal. Bioanal. Chem., 409, 5855–5874; doi: https://doi.org/10.1007/s00216-017-0499-z.

    Article  CAS  PubMed  Google Scholar 

  32. Komarala, V. K., Wang, Y., and Xiao, M. (2010) Nonlinear optical properties of Er3+/Yb3+-doped NaYF4 nanocrystals, Chem. Phys. Lett., 490, 189–193; doi: https://doi.org/10.1016/j.cplett.2010.03.041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gvozdev.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 8, pp. 1154–1166.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdev, D.A., Lukashev, E.P., Gorokhov, V.V. et al. Photophysical Properties of Upconverting Nanoparticle–Phthalocyanine Complexes. Biochemistry Moscow 84, 911–922 (2019). https://doi.org/10.1134/S0006297919080078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919080078

Keywords

Navigation