Skip to main content
Log in

Structural, UV light-excitable luminescence and warm white light generation of dysprosium ion-activated zinc leadfluoride sodium phosphate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multi-peak (blue–yellow–red) with warm white light generation of Dy3+ ions-activated zinc leadfluoride-based sodium phosphate (NPZ:60NaPO3 + 25PbF2 + 15ZnF2) glasses were fabricated via the melt and rapid quenching method. The X-ray diffractogram and Raman spectra were studied to examine the amorphous and network structures of NPZDy glasses. The evaluated molar volume and density values increased with the rise in the amount of Dy3+ ions due to the formation of more non-bridging oxygen in the glass network. The result revealed that the Dy3+ ions-doped NPZDy glasses could absorb from 300 to 1800 nm wavelengths and then determined the bandgap energies of NPZDy glasses by using the Tauc’s plots. Upon 348 nm of ultraviolet radiation, the fabricated glasses emit red (665 nm), yellow (576 nm), and blue (482 nm) light from the 4F9/2 → 6H11/2,13/2,15/2 transitions of Dy3+ ion. The influence of various molar fraction of Dy3+ ions on the Ω2,4,6 and radiative properties of NPZDy glasses were studied by applying the Judd–Ofelt analysis. The decay times were evaluated by fitting the NPZDy glasses’ decays to the bi-exponential function. The larger gain bandwidth of 83.21 × 10–28 cm3 and the maximum quantum efficiency of 79% for NPZDy glasses were calculated by the production of warm white light with (x, y) coordinates of (0.321, 0.361) and relative color temperature of < 4000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X.M. Zang, D.S. Li, E.Y.B. Pun, H. Lin, Dy3+ doped borate glasses for laser illumination. Opt. Mater. Exp. 7, 2040–2054 (2017)

    CAS  Google Scholar 

  2. N. Shasmal, B. Karmakar, White light-emitting Dy3+-doped transparent chloroborosilicate glass: synthesis and optical properties. J. Asian Ceram. Soc. 7, 42–52 (2019)

    Google Scholar 

  3. K. Shahzad, L. Čuček, M. Sagir, N. Ali, M.I. Rashid, R. Nazir, A.S. Nizami, H.A. Al-Turaif, I.M.I. Ismail, An ecological feasibility study for developing sustainable street lighting system. J. Clean. Prod. 175, 683–695 (2018)

    Google Scholar 

  4. M. Monisha, N. Mazumder, G. Lakshminarayana, S. Mandal, S.D. Kamath, Energy transfer and luminescence study of Dy3+ doped zinc-aluminoborosilicate glasses for white light emission. Ceram. Int. 47, 598–610 (2021)

    CAS  Google Scholar 

  5. V. Uma, K. Maheshvaran, K. Marimuthu, G. Muralidharan, Structural and optical investigations on Dy3+ doped lithium tellurofluoroborate glasses for white light applications. J. Lumin. 176, 15–24 (2016)

    CAS  Google Scholar 

  6. K. Jha, M. Jayasimhadri, Spectroscopic investigation on thermally stable Dy3+ doped zinc phosphate glasses for white light emitting diodes. J. Alloys Compd. 688, 833–840 (2016)

    CAS  Google Scholar 

  7. E. Erol, N. Vahedigharehchopogh, U. Ekim, N. Uza, M. Çelikbilek Ersundu, A.E. Ersundu, Ultra-stable Eu3+/Dy3+ co-doped CsPbBr3 quantum dot glass nanocomposites with tunable luminescence properties for phosphor-free WLED applications. J. Alloys Compd. 909, 164650 (2022)

    CAS  Google Scholar 

  8. D. Chen, W. Xiang, X. Liang, J. Zhong, H. Yu, M. Ding, Z.J. Ding, Advances in transparent glass-ceramic phosphors for white light-emitting diodes—a review. J. Eur. Ceram. Soc. 35(3), 859–869 (2015)

    CAS  Google Scholar 

  9. O. Kıbrıslı, A.E. Ersundu, M.Ç. Ersundu, Dy3+ doped tellurite glasses for solid-state lighting: an investigation through physical, thermal, structural and optical spectroscopy studies. J. Non-Cryst. Solids 513, 125–136 (2019)

    Google Scholar 

  10. J. An, S. Zhang, R. Liu, G. Hu, Z. Zhang, Y. Qiu, Y. Zhou, F. Zeng, Z. Su, Luminescent properties of Dy3+/Eu3+ doped fluorescent glass for white LED based on oxyfluoride matrix. J. Rare Earths 39, 26–32 (2021)

    CAS  Google Scholar 

  11. M. Gökçe, D. Koçyiğit, Spectroscopic investigations of Dy3+ doped borogermanate glasses for laser and wLED applications. Opt. Mater. 89, 568–575 (2019)

    Google Scholar 

  12. M. Shwetha, B. Eraiah, Influence of Dy3+ ions on the physical, thermal, structural and optical properties of lithium zinc phosphate glasses. J. Non-Cryst. Solids 555, 120622 (2021)

    CAS  Google Scholar 

  13. Y. Ruangtaweep, P. Yasaka, J. Rajagukguk, J. Kaewkhao, Influence of silver nanoparticles on the Dy3+ luminescence properties in TeO2–ZnO–BaO glasses. Mater. Today: Proc. 5, 15014–15018 (2018)

    CAS  Google Scholar 

  14. V. Kumar, A. Pandey, O.M. Ntwaeaborwa, V. Dutta, H.C. Swart, Structural and luminescence properties of Eu3+/Dy3+ embedded sodium silicate glass for multicolour emission. J. Alloys Compd. 708, 922–931 (2017)

    CAS  Google Scholar 

  15. N. Hsouna, C. Bouzidi, White luminescence and energy transfer studies in Tb3+–Eu3+ co-doped phosphate glasses. Solid State Sci. 134, 107053 (2022)

    CAS  Google Scholar 

  16. P. Meejitpaisan, R. Doddoji, N. Luewarasirikul, H.J. Kim, S. Kothan, J. Kaewkhao, Radioluminescence characteristics of Eu2O3 ions activated CaO/CaF2 + La2O3 + P2O5 scintillating glasses. Inorg. Chem. Commun. 150, 110488 (2023)

    CAS  Google Scholar 

  17. R. Doddoji, H.V. Tuyen, T.T. Hong, L.V.T. Son, D.T. Khan, T.N. Dat, P. Lien, P.T. Dung, Visible DC approach by controlling the UV light in (Eu3+/Tb3+) co-activated TBZN glasses for w-LEDs and a-Si solar cells. Ceram. Int. 49, 16341–16351 (2023)

    CAS  Google Scholar 

  18. G. Lakshminarayana, K.H.A. Bashar, S.O. Baki, A. Lira, U. Caldino, A.N. Meza-Rocha, C. Falcony, E. Camarillo, I.V. Kityk, M.A. Mahdi, Er3+/Dy3+ co-doped B2O3–TeO2–PbO–ZnO–Li2O–Na2O glasses: optical absorption and fluorescence features study for visible and near-infrared fiber laser applications. J. Non-Cryst. Solids 503–504, 366–381 (2019)

    Google Scholar 

  19. H. Bradtmüller, L. Zhang, C.C. de Araujo, H. Eckert, D. Möncke, D. Ehrt, Structural studies of NaPO3–AlF3 glasses by high-resolution double-resonance nuclear magnetic resonance spectroscopy. J. Phys. Chem. C 122(37), 21579–21588 (2018)

    Google Scholar 

  20. E.F. El Agammy, H. Doweidar, K. El-Egili, R. Ramadan, Structure of PbF2–TeO2 glasses and glass-ceramics. J. Mater. Res. Technol. 9(3), 4016–4024 (2020)

    Google Scholar 

  21. W. Akshatha, Y. Raviprakash, S.D. Kamath, Dielectric properties and relaxation dynamics in PbF2–TeO2–B2O3–Eu2O3 glasses. Trans. Nonferrous Met. Soc. China 25, 2637–2645 (2015)

    Google Scholar 

  22. R.G. Capelo, R.S. Baltieri, M. de Oliveira, D. Manzani, Exploring the influence of ZnF2 on Zinc–Tellurite glass: unveiling changes in OH content. Structure, and optical properties. ACS Omega 8(38), 35266–35274 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, B.T. Zhang, Raman spectra study of iron phosphate glasses with sodium sulfate. J. Mol. Struct. 1013, 134–137 (2012)

    CAS  Google Scholar 

  24. F. Muñoz, F.A. Rueda, L. Montagne, R. Marchand, A. Durán, L. Pascua, Structure and properties of (25–x/2)Li2O (25–x/2)Na2O xPbO 50P2O5 metaphosphate glasses. J. Non-Cryst. Solids 347, 153–158 (2004)

    Google Scholar 

  25. A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5, 67583–67609 (2015)

    CAS  Google Scholar 

  26. M. Shwetha, B. Eraiah, Influence of Er3+ ions on the physical, structural, optical, and thermal properties of ZnO–Li2O–P2O5 glasses. Appl. Phys. A 125, 221 (2019)

    CAS  Google Scholar 

  27. D.D. Ramteke, R.S. Gedam, H.C. Swart, Physical and optical properties of lithium borosilicate glasses doped with Dy3+ ions. Physica B 535, 194–197 (2018)

    CAS  Google Scholar 

  28. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962)

    CAS  Google Scholar 

  29. G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962)

    CAS  Google Scholar 

  30. V. Himamaheswara Rao, P. Syam Prasad, M. Mohan Babu, P. Venkateswara Rao, T. Satyanarayana, L.F. Santos, N. Veeraiah, Spectroscopic studies of Dy3+ ion doped tellurite glasses for solid state lasers and white LEDs. Spectrochim. Acta A. 188, 516–524 (2018)

    CAS  Google Scholar 

  31. G.C. Ram, T. Narendrudu, S. Suresh, A.S. Kumar, M.V.S. Rao, V.R. Kumar, D.K. Rao, Investigation of luminescence and laser transition of Dy3+ ion in P2O5–PbO–Bi2O3–R2O3 (R= Al, Ga, in) glasses. Opt. Mater. 66, 189–196 (2017)

    CAS  Google Scholar 

  32. A. Mohan Babu, B.C. Jamalaiah, J. Suresh Kumar, T. Sasikala, L. Rama Moorthy, Spectroscopic and photoluminescence properties of Dy3+-doped lead tungsten tellurite glasses for laser materials. J. Alloys Compd. 509, 457–462 (2011)

    Google Scholar 

  33. S. Ravangvong, N. Chanthima, R. Rajaramakrishna, H.J. Kim, N. Sangwaranatee, J. Kaewkhao, Dy3+ ions doped (Na2O/NaF)–Gd2O3–P2O5 glasses for solid state lighting material applications. Solid State Sci. 97, 105972 (2019)

    CAS  Google Scholar 

  34. J. Tauc, F. Abeles (eds.), Optical properties of solids (North Holland, Amsterdam, 1970), p.903

    Google Scholar 

  35. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. A 22, 903–922 (1970)

    CAS  Google Scholar 

  36. A.S. Hassanien, I. Sharma, P. Sharma, Inference of Sn addition on optical properties of the novel thermally evaporated thin a-Ge15Te50S35xSnx films and some physical properties of their glasses. Mater. Chem. Phys. 293, 126887 (2023)

    CAS  Google Scholar 

  37. R. Doddoji, P. Meejitpaisan, J. Kaewkhao, Determination of optical constants via the single oscillator Drude–Voigt dispersion model in fluoroborate glass for optical lenses: nonlinear optical properties. Physica B 671, 415398 (2023)

    CAS  Google Scholar 

  38. B. Li, H. Qi, Y. Duan, M. Peng, First-principles calculations: structural stability, electronic structure, optical properties and thermodynamic properties of AlBN2, Al3BN4 and AlB3N4 nitrides. Mater. Sci. Semicond. Process. 160, 107405 (2023)

    Google Scholar 

  39. P. Meejitpaisan, R. Doddoji, S. Kothan, J. Kaewkhao, Photo and X-ray luminescence characteristics of CeF3-doped SiO2 + B2O3 +AlF3 + NaF + CaF2 scintillating glasses. Radiat. Meas. 158, 106853 (2022)

    CAS  Google Scholar 

  40. R. Liu, M. Chen, X. Zhu, Y. Zhou, F. Zeng, Z. Su, Luminescent properties and structure of Dy3+ doped germanosilicate glass. J. Lumin. 226, 117378 (2020)

    CAS  Google Scholar 

  41. P. Meejitpaisan, R. Doddoji, H.J. Kim, C.K. Jayasankar, J. Kaewkhao, Photoluminescence and X-ray-induced luminescence behavior of Sm2O3-doped oxyfluoroborate scintillating glass for radiation detecting material. Phys. Status Solidi A 220(10), 2200441 (2022)

    Google Scholar 

  42. C. Sumalatha, R. Doddoji, M. Venkateswarlu, P.R. Rani, K. Swapna, S.K. Mahamuda, A.S. Rao, S.K. Mahamuda, A.S. Rao, White light emission from Dy3+-doped ZnO + Bi2O3 + BaF2 + B2O3 + TeO2 glasses: structural and spectroscopic properties. Spectrochim. Acta A Mol. Biomol. 240, 118568 (2020)

    CAS  Google Scholar 

  43. B.C. Jamalaiah, Intense yellow luminescence from Dy3+-doped TeO2–WO3–GeO2 glasses: structural and optical characterization. J. Phys. Condens. Matter 30, 335701 (2018)

    PubMed  Google Scholar 

  44. B. Shanmugavelu, V.V.R.K. Kumar, Luminescence studies of Dy3+ doped bismuth zinc borate glasses. J. Lumin. 146, 358–363 (2014)

    CAS  Google Scholar 

  45. M. Vijayakumar, K. Mahesvaran, D.K. Patel, S. Arunkumar, K. Marimuthu, Structural and optical properties of Dy3+ doped aluminofluoroborophosphate glasses for white light applications. Opt. Mater. 37, 695–705 (2014)

    CAS  Google Scholar 

  46. S.A. Saleem, B.C. Jamalaiah, M. Jayasimhadri, A.S. Rao, K. Jang, L.R. Moorthy, Luminescent studies of Dy3+ ion in alkali lead tellurofluoroborate glasses. J. Quant. Spectrosc. Radiat. Transfer 112, 78–84 (2011)

    CAS  Google Scholar 

  47. C.R. Kesavulu, C.K. Jayasankar, White light emission in Dy3+-doped lead fluorophosphate glasses. Mater. Chem. Phys. 130, 1078–1085 (2011)

    CAS  Google Scholar 

  48. P. Karthikeyan, S. Arunkumar, K. Annapoorani, K. Marimuthu, Investigations on the spectroscopic properties of Dy3+ ions doped Zinc calcium tellurofluoroborate glasses. Spectrochim. Acta A Mol. Biomol. 193, 422–431 (2018)

    CAS  Google Scholar 

  49. C. Hua, L. Shen, E.Y.B. Pun, D. Li, H. Lin, Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices. Opt. Mater. 78, 72–81 (2018)

    CAS  Google Scholar 

  50. N. Deopa, A.S. Rao, Photoluminescence and energy transfer studies of Dy3+ ions doped lithium lead alumino borate glasses for w-LED and laser applications. J. Lumin. 192, 832–841 (2017)

    CAS  Google Scholar 

  51. P.R. Rani, M. Venkateswarlu, S.K. Mahamuda, K. Swapna, N. Deopa, A.S. Rao, Spectroscopic studies of Dy3+ ions doped barium lead alumino fluoro borate glasses. J. Alloys Compd. 787, 503–518 (2019)

    Google Scholar 

  52. V. Uma, K. Marimuthu, G. Muralidharan, Influence of modifier cations on the spectroscopic properties of Dy3+ doped telluroborate glasses for white light applications. J. Fluoresc. 26, 2281–2294 (2016)

    CAS  PubMed  Google Scholar 

  53. J. Juarez-Batalla, A.N. Meza-Rocha, G.H. Munoz, U. Caldino, Green to white tunable light emitting phosphors: Dy3+/Tb3+ in zinc phosphate glasses. Opt. Mater. 64, 33–39 (2017)

    CAS  Google Scholar 

  54. A.N. Meza-Rocha, A. Speghini, J. Franchini, R. Lozada-Morales, U. Caldiño, Multicolor emission in lithium–aluminium–zinc phosphate glasses activated with Dy3+, Eu3+ and Dy3+/Eu3+. J. Mater. Sci. Mater. Electron. 28, 10564–10572 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This study received significant support from the Ministry of Higher Education and Scientific Research through the Young Researchers Encouragement Program “Programme d’Encouragement des Jeunes Chercheurs (PEJC)”—Session 2022—Reference: 22PEJC-D1P5 in Tunisia.

Funding

This study received significant support from the Ministry of Higher Education and Scientific Research through the Young Researchers Encouragement Program “Programme d’Encouragement des Jeunes Chercheurs (PEJC)”—Session 2022—Reference: 22PEJC-D1P5 in Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

IJ: Data curation (equal); Formal analysis (supporting); Methodology (equal); Funding acquisition (lead); Writing—review & editing (equal). RD: Conceptualization (lead); Data curation (equal); Formal analysis (lead); Investigation (lead); Writing—original draft (lead); Writing—review & editing (equal).

Corresponding authors

Correspondence to Ifa Jlassi or Ramachari Doddoji.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jlassi, I., Doddoji, R. Structural, UV light-excitable luminescence and warm white light generation of dysprosium ion-activated zinc leadfluoride sodium phosphate glasses. J Mater Sci: Mater Electron 35, 748 (2024). https://doi.org/10.1007/s10854-024-12470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12470-2

Navigation