Skip to main content
Log in

In vitro response of transgenic aspen containing glutamine synthetase gene GSI to the sublethal dose of phosphinothricin

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Transgenic aspen plants containing the glutamine synthetase gene GSI from pine have been produced. Among 37 transformed lines, 34 were found to possess GSI. The RT-PCR analysis of GSI transcripts confirmed the presence of specific transcripts in 32 lines. The phenotypic effect of a glutamine synthetase activity in transgenic plants was evaluated by in vitro cultivation of plants at the presence of a sublethal dose (0.5 mg/l) of phosphinothricin, which inhibits this enzyme. It was shown that the sublethal dose of this herbicide provides a predictable inhibiting effect on the nontransformed aspen plants, including the inhibition of their rhizogenesis, whereas transgenic plants demonstrated various responses. In most transgenic lines, we observed an unexpected stimulating effect of low herbicide doses on in vitro rhizogenesis; this effect was manifested through the increased radication frequency, increased average number of roots per plant, and increased total length of roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulphoxide

DTT:

dithiothreitol

RI:

response index

IAA:

indoleacetic acid

RT-PCR:

PCR with the use of reverse transcriptase

bp:

(number) of base pairs

MS medium:

Murashige and Skoog nutrient medium

CTAB:

N-cetyl-N,N,N-trimethylammonium bromide

GS:

glutamine synthetase

PPT:

phosphinotricin

WPM:

woody plant medium

References

  1. Kirby, E.G., Gallardo, F., Man, H., and El-Khatib, R., Silvae Genet., 2007, vol. 55, pp. 278–284.

    Google Scholar 

  2. Fu, J., Samplo, R., Gallardo, F., Canovas, F.M., and Kirby, E.G., Plant, Cell Environ., 2003, vol. 26, pp. 411–418.

    Article  CAS  Google Scholar 

  3. Fuentes, S.I., Allen, D.J., Ortiz-Lopez, A., and Hermandez, G., J. Exp. Bot., 2001, vol. 52, no. (358), pp. 1071–1081.

    Article  CAS  PubMed  Google Scholar 

  4. Oliveira, I.C., Brears, T., Knight, T.J., Clark, A., and Coruzzi, G.M., Plant Physiol., 2002, vol. 129, pp. 1170–1180.

    Article  CAS  PubMed  Google Scholar 

  5. Cai, H., Zhou, Y., Xiao, J., Li:, X., Zhang, Q., and Lian, X., Plant Cell Rep., 2009, vol. 28, pp. 527–537.

    Article  CAS  PubMed  Google Scholar 

  6. Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., De Navarra, A.T., and Canovas, F.M., New Phytol., 2004, vol. 164, pp. 137–145.

    Article  CAS  Google Scholar 

  7. El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., and Kirby, E.G., Tree Physiol., 2004, vol. 24, pp. 729–736.

    CAS  PubMed  Google Scholar 

  8. Pascual, M.B., Jing, Z.P., Kirby, E.G., Canovas, F.M., and Gollardo, F., Phytochemistry, 2008, vol. 69, pp. 382–389.

    Article  CAS  PubMed  Google Scholar 

  9. Revenkova, E.V., Bagyan, I.L., Pozmogova, G.E., and Kraev, A.S., Mol. Genet. Mikrobiol. Virusol., 1994.

  10. Shestibratov, K.A., Bulatova, I.V., Shadrina, T.E., and Miroshnikov, A.I., in Mat. VIII Mezhdunar. Konf. Molodykh Uchenykh “Lesa Evrazii—Severnyi Kavkaz”, 6–12 okt. 2008 (Proc. VIII Int. Conf. Young Scientists “Forests of Eurasia—Northern Caucasus,” October 6–12, 2008), Sochi: Izd. MGUL, 2008, pp. 6–12.

    Google Scholar 

  11. Murashige, T. and Skoog, F., Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  12. Rogers, S. and Bendich, A., Extraction of Total Cellular DNA from Plants, Algae and Fungi, Gelvin, S. and Schiperoort, R., Eds., Dordrecht: Kluwer, 1995, Section 7-1.

    Google Scholar 

  13. Gehrig, H.H., Winter, K., Cushman, J., Boland, A., and Taybi, T., Plant Mol. Biol. Report., 2000, vol. 18, pp. 369–376.

    Article  CAS  Google Scholar 

  14. Lloyd, G. and McCown, B., Proc. Int. Plant Propagators Soc., 1980, vol. 30, pp. 421–427.

    Google Scholar 

  15. Crozier, A., Kamiya, Y., Bishop, G., and Yokota, T., in Biochemistry and Molecular Biology of Plants, Buchanan, B.B., Gruissem, W., and Jones, R.L., Eds., Rockville, MD, USA: Am. Soc. of Plant Physiol. (Pubs), 2000, pp. 850–928.

    Google Scholar 

  16. Cho, H.J., Brotherton, J.E., Song, H.S., and Widholm, J.M., Plant Physiol., 2000, vol. 123, pp. 1069–1076.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Shestibratov.

Additional information

Original Russian Text © K.A. Shestibratov, I.V. Bulatova, P.S. Novikov, 2009, published in Biotekhnologiya, 2009, No. 6, pp. 57–64.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestibratov, K.A., Bulatova, I.V. & Novikov, P.S. In vitro response of transgenic aspen containing glutamine synthetase gene GSI to the sublethal dose of phosphinothricin. Appl Biochem Microbiol 46, 763–768 (2010). https://doi.org/10.1134/S0003683810080053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683810080053

Key words

Navigation