Skip to main content
Log in

Numerical simulation of the transport properties of indium antimonide

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A systematic investigation of the behavior of the transport coefficients of n-InSb over wide ranges of temperatures and concentrations of dopant atoms has been performed using the numerical solution of the Boltzmann transport equation. The thermoelectric characteristics of indium antimonide have been analyzed. The influence of different mechanisms of scattering of charge carriers on the transport coefficients and efficiency of thermoelectric energy conversion has been considered. The nature of the specific features of the temperature and concentration dependence of the transport and thermoelectric properties of n-InSb has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landolt-Börnstein, Group III: Condensed Matter, Vol. 41A1b: Group IV Elements, IV–IV and III–V Compounds, Part b: Electronic, Transport, Optical and Other Properties, Ed. by O. Madelung, U. Rössler, and M. Schulz (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  2. Electronic Archive: New Semiconductor Materials. Characteristics and Properties; www.ioffe.ru/SVA/NSM/Semicond/InSb/index.html

  3. R. A. Isaacson, Phys. Rev. 169, 312 (1968).

    Article  ADS  Google Scholar 

  4. R. Bowers, R. W. Ure, J. E. Bauerle, and A. J. Cornish, J. Appl. Phys. 30, 930 (1959).

    Article  ADS  Google Scholar 

  5. G. Busch and E. Steigmeier, Helv. Phys. Acta 34, 1 (1961).

    Google Scholar 

  6. H. A. Nilsson, P. Caroff, C. Thelander, M. Larsson, J. B. Wagner, L.-E. Wernersson, L. Samuelson, and H. Q. Xu, Nano Lett. 9, 3151 (2009).

    Article  ADS  Google Scholar 

  7. H. Yao, H. Y. Günel, C. Blömers, K. Weis, J. Chi, J. G. Lu, J. Liu, D. Grützmacher, and T. Schäpers, Appl. Phys. Lett. 101, 082103 (2012).

    Article  ADS  Google Scholar 

  8. N. Mingo, Appl. Phys. Lett. 84(14), 2652 (2004).

    Article  ADS  Google Scholar 

  9. N. Mingo, Appl. Phys. Lett. 88(14), 149902 (2006).

    Article  ADS  Google Scholar 

  10. D. L. Rode, Phys. Rev. B: Solid State 3, 3287 (1971).

    Article  ADS  Google Scholar 

  11. E. Litwin-Staszewska, W. Szymanska, and R. Piotrzkowski, Phys. Status Solidi B 106, 551 (1981).

    Article  ADS  MATH  Google Scholar 

  12. Y. J. Jung, M. K. Park, S. I. Tae, K. H. Lee, and H. J. Lee, J. Appl. Phys. 69(5), 3109 (1991).

    Article  ADS  Google Scholar 

  13. S. Yamaguchi, T. Matsumoto, J. Yamazaki, N. Kaiwa, and A. Yamamoto, Appl. Phys. Lett. 87, 201902 (2005).

    Article  ADS  Google Scholar 

  14. Handbuch der Physik, Ed. by H. Geiger and K. Scheel, Vol. 24-2: A. Sommerfeld and H. Bethe, Elektronentheorie der Metalle (Springer-Verlag, Heidelberg, 1933; Gostekhizdat, Moscow, 1938) [in German and in Russian].

    MATH  Google Scholar 

  15. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960; Inostrannaya Literatura, Moscow, 1962).

    MATH  Google Scholar 

  16. M. Kohler, Z. Phys. 124, 772 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. V. Fischetti, IEEE Trans. Electron Devices 38, 634 (1991).

    Article  ADS  Google Scholar 

  18. T. Kunikiyo, M. Takenaka, Y. Kamakura, M. Yamaji, H. Mizuno, M. Morifuji, K. Taniguchi, and C. Hamaguchi, J. Appl. Phys. 75, 297 (1994).

    Article  ADS  Google Scholar 

  19. C. Ertler, F. Schurrer, and W. Koller, J. Phys. A: Math. Gen. 35, 8673 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Fatemi and F. Odeh, J. Comput. Phys. 108, 209 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A. Majorana and R. M. Pidatella, J. Comput. Phys. 174, 649 (2001).

    Article  ADS  MATH  Google Scholar 

  22. M. A. Alam, M. A. Stettler, and M. S. Lundstrom, Solid-State Electron. 36, 263 (1993).

    Article  ADS  Google Scholar 

  23. J. P. Aubert, J. C. Vaissiere, and J. P. Nougier, J. Appl. Phys. 56, 1128 (1984).

    Article  ADS  Google Scholar 

  24. K. Fletcher and P. N. Butcher, J. Phys. C: Solid State Phys. 5, 212 (1972).

    Article  ADS  Google Scholar 

  25. J. P. Nougier and M. Rolland, Phys. Rev. B: Solid State 8, 5728 (1973).

    Article  ADS  Google Scholar 

  26. A. I. Ansel’m, Introduction to Semiconductor Theory (Fizmatgiz, Moscow, 1978; Prentice Hall, Englewood Cliffs, New Jersey, 1981).

    Google Scholar 

  27. B. M. Askerov, Electron Transport Phenomena in Semiconductors (Nauka, Moscow, 1985; World Scientific, Singapore, 1994).

    Google Scholar 

  28. H. D. Rees, J. Phys. Chem. Solids 30, 643 (1969).

    Article  ADS  Google Scholar 

  29. A. G. Samoilovich, Thermoelectric and Thermomagnetic Methods of Power Conversion (LKI, Moscow, 2007) [in Russian].

    Google Scholar 

  30. http://computing.kiae.ru/

  31. H. J. Hrostowski, F. J. Morin, T. H. Geballe, and G. H. Wheatley, Phys. Rev. 100, 1672 (1955).

    Article  ADS  Google Scholar 

  32. E. Litwin-Staszewska, S. Porowski, and A. Filipchenko, Phys. Status Solidi B 48, 519 (1971).

    Article  ADS  Google Scholar 

  33. A. S. Filipchenko and D. N. Nasledov, Phys. Status Solidi B 19, 435 (1967).

    Article  ADS  Google Scholar 

  34. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957).

    Google Scholar 

  35. E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

    Article  ADS  Google Scholar 

  36. W. Szymańska and T. Dietl, J. Phys. Chem. Solids 39(10), 1025 (1978).

    Article  ADS  Google Scholar 

  37. H. Y. Fun, Phys. Rev. 82, 900 (1951).

    Article  ADS  Google Scholar 

  38. H. Fröhlich, H. Pelzer, and S. Zienau,, Philos. Mag. 41, 221 (1950).

    MATH  Google Scholar 

  39. H. Ehrenreich, J. Phys. Chem. Solids 2(2), 131 (1957).

    Article  ADS  Google Scholar 

  40. M. Oszwaldowski and M. Zimpel, J. Phys. Chem. 49, 1179 (1988).

    Google Scholar 

  41. C. R. Pidgeon and S. H. Groves, Phys. Rev. 186, 824 (1969).

    Article  ADS  Google Scholar 

  42. W. Zawadzki and W. Szymanska, Phys. Status Solidi B 45, 415 (1971).

    Article  ADS  Google Scholar 

  43. W. Szymanska, P. Boguslawski, and W. Zawadzki, Phys. Status Solidi B 65, 641 (1974).

    Article  ADS  Google Scholar 

  44. P. Boguslawski, Phys. Status Solidi B 70, 53 (1975).

    Article  ADS  Google Scholar 

  45. J. L. Ivey, Phys. Rev. B: Solid State 9, 4281 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Orlov.

Additional information

Original Russian Text © V.G. Orlov, G.S. Sergeev, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 11, pp. 2105–2111.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlov, V.G., Sergeev, G.S. Numerical simulation of the transport properties of indium antimonide. Phys. Solid State 55, 2215–2222 (2013). https://doi.org/10.1134/S1063783413110188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413110188

Keywords

Navigation