Skip to main content
Log in

Electron Mobility in Bulk n-Doped SiC-Polytypes 3C-SiC, 4H-SiC, and 6H-SiC: A Comparison

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

This communication presents a comparative study on the charge transport (in transient and steady state) in bulk n-type doped SiC-polytypes: 3C-SiC, 4H-SiC and 6H-SiC. The time evolution of the basic macrovariables: the “electron drift velocity” and the “non-equilibrium temperature” are obtained theoretically by using a Non-Equilibrium Quantum Kinetic Theory, derived from the method of Nonequilibrium Statistical Operator (NSO). The dependence on the intensity and orientation of the applied electric field of this macrovariables and mobility are derived and analyzed. From the results obtained in this paper, the most attractive of these semiconductors for applications requiring greater electronic mobility is the polytype 4H-SiC with the electric field applied perpendicular to the c-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. C. Persson and A. F. Silva, in Optoelectronic Devices: III-Nitrides, Ed. by M. Henini and M. Razeghi (Elsevier, London, 2005), Vol. 1, Chap. 17, p. 479.

    Google Scholar 

  2. K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide Bandgap Semiconductors (Springer, Berlin, 2006).

    Google Scholar 

  3. H. E. Nilsson, A. Martinez, U. Sannemo, M. Hjelm, E. Bellotti, and K. Brennan, Phys. B (Amsterdam, Neth.) 314, 68 (2002).

  4. M. Hjelm, K. Bertilsson, and H. E. Nilsson, Appl. Surf. Sci. 184, 194 (2001).

    Article  ADS  Google Scholar 

  5. K. Tsukioka, D. Vasileska, and D. K. Ferry, Phys. B (Amsterdam, Neth.) 185, 466 (1993).

  6. E. Bellotti, H. E. Nilsson, K. F. Brennan, P. P. Ruden, and R. Trew, J. Appl. Phys. 87, 3864 (2000).

    Article  ADS  Google Scholar 

  7. R. P. Joshi, J. Appl. Phys. 78, 5518 (1995).

    Article  ADS  Google Scholar 

  8. H. E. Nilsson, U. Sannemo, and C. S. Petersson, J. Appl. Phys. 80, 3365 (1996).

    Article  ADS  Google Scholar 

  9. D. Y. Xing and C. S. Ting, Phys. Rev. B 35, 3971 (1987).

    Article  ADS  Google Scholar 

  10. M. Dür, S. M. Goodinick, S. S. Pennathur, J. F. Wager, M. Reigrotzki, and R. Redmer, J. Appl. Phys. 83, 3176 (1998).

    Article  ADS  Google Scholar 

  11. X. L. Lei, H. L. Cui, and N. J. M. Horing, J. Phys. C: Solid State Phys. 20, L287 (1987).

    Article  ADS  Google Scholar 

  12. H. E. Ruda and B. Lai, J. Appl. Phys. 68, 1714 (1990).

    Article  ADS  Google Scholar 

  13. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974).

    Google Scholar 

  14. D. N. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Academie, Wiley-VCH, Berlin, 1997), Vol. 1, 2.

  15. A. I. Akhiezera and S. V. Peletminskii, Methods of Statistical Physics (Pergamon, Oxford, 1981).

    Google Scholar 

  16. R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Predictive Statistical Mechanics: A Nonequilibrium Statistical Ensemble Formalism (Kluwer Academic, Dordrecht, 2002).

    Book  MATH  Google Scholar 

  17. R. Luzzi and A. R. Vasconcellos, Phys. Prog. Phys. 38, 887 (1990).

    Article  Google Scholar 

  18. L. Lauck, A. R. Vasconcellos, and R. Luzzi, Phys. A 168, 789 (1990).

    Article  Google Scholar 

  19. R. Luzzi, A. R. Vasconcellos, J. G. Ramos, and C. G. Rodrigues, Theor. Math. Phys. 194, 4 (2018).

    Article  Google Scholar 

  20. A. L. Kuzemsky, Theor. Math. Phys. 194, 30 (2018).

    Article  MathSciNet  Google Scholar 

  21. V. G. Morozov, Theor. Math. Phys. 194, 105 (2018).

    Article  Google Scholar 

  22. G. Röpke, Theor. Math. Phys. 194, 74 (2018).

    Article  Google Scholar 

  23. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Eur. Phys. J. B 72, 67 (2009).

    Article  ADS  Google Scholar 

  24. C. G. Rodrigues and R. Luzzi, J. Lumin. 199, 450 (2018).

    Article  Google Scholar 

  25. C. G. Rodrigues, A. R. Vasconcellos, R. Luzzi, and V. N. Freire, J. Appl. Phys. 98, 043703 (2005).

    Article  ADS  Google Scholar 

  26. C. G. Rodrigues, J. R. L. Fernadez, V. N. Freire, A. R. Vasconcellos, J. R. Leite, V. A. Chitta, and R. Luzzi, J. Appl. Phys. 95, 4914 (2004).

    Article  ADS  Google Scholar 

  27. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, J. Phys. D: Appl. Phys. 38, 3584 (2005).

    Article  ADS  Google Scholar 

  28. C. G. Rodrigues, V. N. Freire, J. A. P. Costa, A. R. Vasconcellos, and R. Luzzi, Phys. Status Solidi B 216, 35 (1999).

    Article  ADS  Google Scholar 

  29. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Braz. J. Phys. 36, 255(2006).

    ADS  Google Scholar 

  30. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, J. Appl. Phys. 102, 073714 (2007).

    Article  ADS  Google Scholar 

  31. C. G. Rodrigues, V. N. Freire, A. R. Vasconcellos, and R. Luzzi, Braz. J. Phys. 32, 439 (2002).

    Article  ADS  Google Scholar 

  32. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Transp. Theory Stat. Phys. 29, 733 (2000).

    Article  ADS  Google Scholar 

  33. C. G. Rodrigues, C. A. B. Silva, A. R. Vasconcellos, J. G. Ramos, and R. Luzzi, Braz, J. Phys. 40, 63 (2010).

    Article  ADS  Google Scholar 

  34. R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Statistical Foundations of Irreversible Thermodynamics (Teubner-Bertelsmann, Springer, Stuttgart, 2000).

  35. D. Jou and J. Casas-Vazquez, Rep. Prog. Phys. 66, 1937 (2003).

    Article  ADS  Google Scholar 

  36. R. Luzzi, A. R. Vasconcellos, J. Casas-Vazquez, and D. Jou, J. Chem. Phys. 107, 7383 (1997).

    Article  ADS  Google Scholar 

  37. B. K. Ridley, J. Phys. C: Solid State Phys. 10, 1589 (1977).

    Article  ADS  Google Scholar 

  38. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Solid State Commun. 140, 135 (2006).

    Article  ADS  Google Scholar 

  39. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, J. Appl. Phys. 108, 033716 (2010).

    Article  ADS  Google Scholar 

  40. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, J. Appl. Phys. 113, 113701 (2013).

    Article  ADS  Google Scholar 

  41. C. G. Rodrigues, F. S. Vannucchi, and R. Luzzi, Adv. Quantum Technol. 1, 201800023 (2018).

    Article  Google Scholar 

  42. X. M. Weng and H. L. Cui, Phys. Status Solidi B 201, 161 (1997).

    Article  ADS  Google Scholar 

  43. E. Bellotti, H. E. Nilsson, K. F. Brennan, and P. P. Ruden, J. Appl. Phys. 85, 3211 (1999).

    Article  ADS  Google Scholar 

  44. G. L. Harris, Properties of Silicon Carbide, EMIS Datareviews Ser., No. 13 (INSPEC, London, 1995).

  45. M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, and S. Yoshida, J. Appl. Phys. 61, 599 (1987).

    Article  ADS  Google Scholar 

  46. L. Patrick and W. J. Choyke, Phys. Rev. B 2, 2255 (1970).

    Article  ADS  Google Scholar 

  47. W. Götz, A. Schöner, G. Pensl, W. Suttrop, W. J. Choyke, R. Stein, and S. Leibenzeder, J. Appl. Phys. 73, 3332 (1993).

    Article  ADS  Google Scholar 

  48. C. Persson and U. Lindefelt, J. Appl. Phys. 82, 5496 (1997).

    Article  ADS  Google Scholar 

  49. H. Iwataa and K. M. Itohb, J. Appl. Phys. 89, 6228 (2001).

    Article  ADS  Google Scholar 

  50. E. Bellotti, H. E. Nilsson, K. F. Brennan, P. P. Ruden, and R. Trew, J. Appl. Phys. 87, 3864 (2000).

    Article  ADS  Google Scholar 

  51. S. Dhar and S. Ghosh, J. Appl. Phys. 88, 6519 (2000).

    Article  ADS  Google Scholar 

  52. H. Iwata, K. M. Itoh, and G. Pensl, J. Appl. Phys. 88, 1956 (2000).

    Article  ADS  Google Scholar 

  53. C. G. Rodrigues, A. R. Vasconcellos, R. Luzzi, and V. N. Freire, J. Phys.: Condens. Matter 19, 346214 (2007).

    Google Scholar 

  54. R. J. Seymour, M. R. Junnarkar, and R. R. Alfano, Solid State Commun. 41, 657 (1982).

    Article  ADS  Google Scholar 

  55. C. V. Shank, R. L. Fork, B. I. Greene, F. K. Reinhart, and R. A. Logan, Appl. Phys. Lett. 38, 104 (1981).

    Article  ADS  Google Scholar 

  56. A. V. A. Neto, A. R. Vasconcellos, V. N. Freire, and R. Luzzi, Appl. Phys. Lett. 85, 4055 (2004).

    Article  ADS  Google Scholar 

  57. F. Meng, J. Ma, J. He, and W. Li, Phys. Rev. B 99, 045201 (2019).

    Article  ADS  Google Scholar 

  58. R. K. Chang, J. M. Ralston, and D. E. Keating, in Ligth Scattering Spectra of Solids I, Ed. by G. B. Wright (Springer, New York, 1969), p. 369.

    Google Scholar 

  59. J. M. Ziman, Electrons and Phonons (Oxford Univ. Press, Oxford, 1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Rodrigues.

Appendices

APPENDIX A

COLLISION TERMS IN EQS. (6)–(9)

The detailed expressions for the collision operators in Eqs. (6)–(9) are:

$$\begin{gathered} {{J}_{{{{{\mathbf{P}}}_{{{\text{ph}}}}}}}}(t) = \sum\limits_{{\mathbf{k}},{\mathbf{q}},\ell ,\eta } {\frac{{2\pi }}{\hbar }\hbar {\mathbf{q}}{\text{|}}M_{\eta }^{\ell }({\mathbf{q}}){{{\text{|}}}^{2}}[{{\nu }_{{{\mathbf{q}},\eta }}}(t){{f}_{{\mathbf{k}}}}(t)} \\ \, \times (1 - {{f}_{{{\mathbf{k}} + {\mathbf{q}}}}}(t)) - {{f}_{{{\mathbf{k}} + {\mathbf{q}}}}}(t)(1 + {{\nu }_{{{\mathbf{q}},\eta }}}(t)) \\ \, \times (1 - {{f}_{{\mathbf{k}}}}(t))]\delta ({{\epsilon }_{{{\mathbf{k}} + {\mathbf{q}}}}} - {{\epsilon }_{{\mathbf{k}}}} - \hbar {{\omega }_{{{\mathbf{q}},\eta }}}), \\ \end{gathered} $$
$${{{\mathbf{J}}}_{{{{{\mathbf{P}}}_{{{\text{imp}}}}}}}}(t) = - \frac{{128\sqrt {2\pi m_{e}^{*}} {{{({{k}_{{\text{B}}}}T_{e}^{*}(t))}}^{{3/2}}}}}{{{{n}_{I}}{{{(\mathcal{Z}{{e}^{2}}{\text{/}}{{\epsilon }_{0}})}}^{2}}G(t)}}{{{\mathbf{P}}}_{e}}(t),$$
$$\begin{gathered} {{J}_{{E,{\text{ph}}}}}(t) = \sum\limits_{{\mathbf{k}},{\mathbf{q}},\ell ,\eta } {\frac{{2\pi }}{\hbar }{\text{|}}M_{\eta }^{\ell }({\mathbf{q}}){{{\text{|}}}^{2}}({{\epsilon }_{{{\mathbf{k}} + {\mathbf{q}}}}} - {{\epsilon }_{{\mathbf{k}}}})[{{\nu }_{{{\mathbf{q}},\eta }}}(t)} \\ \, \times {{f}_{{\mathbf{k}}}}(t)(1 - {{f}_{{{\mathbf{k}} + {\mathbf{q}}}}}(t)) - {{f}_{{{\mathbf{k}} + {\mathbf{q}}}}}(t) \\ \, \times (1 + {{\nu }_{{{\mathbf{q}},\eta }}}(t))(1 - {{f}_{{\mathbf{k}}}}(t))] \\ \, \times \delta ({{\epsilon }_{{{\mathbf{k}} + {\mathbf{q}}}}} - {{\epsilon }_{{\mathbf{k}}}} - \hbar {{\omega }_{{{\mathbf{q}},\eta }}}), \\ \end{gathered} $$
$${{J}_{{{\text{LO}},an}}}(t) = - \sum\limits_{\mathbf{q}} {\hbar {{\omega }_{{{\mathbf{q}},{\text{LO}}}}}\frac{{{{\nu }_{{{\mathbf{q}},{\text{LO}}}}}(t) - {{\nu }_{{{\mathbf{q}},{\text{AC}}}}}(t)}}{{{{\tau }_{{{\text{LO}},an}}}}}} ,$$
$${{J}_{{{\text{AC}},dif}}}(t) = - \sum\limits_{\mathbf{q}} {\hbar {{\omega }_{{{\mathbf{q}},{\text{AC}}}}}\frac{{{{\nu }_{{{\mathbf{q}},{\text{AC}}}}}(t) - {{\nu }_{0}}}}{{{{\tau }_{{ac,dif}}}}}} .$$

The quantities \(M_{\eta }^{\ell }\)(q) are the matrix elements of the interaction between carriers and branch η-type phonons (η = LO, AC for longitudinal optical and acoustical phonons, respectively), with supraindex ℓ indicating the kind of interaction (polar, deformation potential, piezoelectric, etc.); νq(t) and fk(t) are, respectively, the phonons and electrons distribution; δ is delta function and \({{\epsilon }_{{\mathbf{k}}}}\) = ℏ2k2/2\(m_{e}^{*}\); nI is the density of impurities, ℒ the units of charge of the impurity, and

$$G(t) = \ln (1 + b(t)) - \frac{{b(t)}}{{1 + b(t)}},$$

where b(t) = 24\({{\epsilon }_{0}}m_{e}^{*}{{[{{k}_{{\text{B}}}}T_{e}^{*}(t)]}^{2}}{\text{/}}{{n}_{I}}{{e}^{2}}{{\hbar }^{2}}\). Finishing, τLO,an is a relaxation time which is obtained from the band width in Raman scattering experiments [58], and τAC,dif is a characteristic time for heat diffusion, which depends on the particularities of the contact of sample and reservoir [59]. We notice that more details for the collision operators are given in [32].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C.G. Electron Mobility in Bulk n-Doped SiC-Polytypes 3C-SiC, 4H-SiC, and 6H-SiC: A Comparison. Semiconductors 55, 625–632 (2021). https://doi.org/10.1134/S1063782621070150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621070150

Keywords:

Navigation