Skip to main content
Log in

Thermal transport properties of semimetal scandium antimonide: a first-principles study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A thorough study on the thermal transport properties of the semimetal ScSb is carried out by combining first-principles calculations with Boltzmann transport theory. The dynamic stability of ScSb is verified by the phonon dispersion curve without an imaginary part. The obtained equilibrium lattice constant and bulk modulus agree well with the experimental and theoretical data. At room temperature, the calculated lattice thermal conductivity of ScSb is 29.9 W m−1 K−1, which is greatly larger than that of LaP (3.19 W m−1 K−1) due to its higher group velocity and smaller average Grüneisen parameter. By analyzing the contribution of each phonon mode to the lattice thermal conductivity, we find that the acoustic branch plays a dominant role, while the optical branch has little effect on it because of the inhibition of the anharmonicity. The temperature-dependent electronic transport properties, such as Seebeck coefficient, electrical conductivity, power factor, and thermal conductivity, as a function of chemical potential, are also investigated. It is shown that the electronic thermal conductivity increases with the increasing temperature and chemical potential. By comparing the temperature dependence of lattice thermal conductivity and electronic thermal conductivity, it is found that the lattice thermal conductivity is dominant in the low-temperature region and the electronic thermal conductivity is dominant in the high-temperature region. The calculated maximum figure of merit ZT of ScSb is only 0.044 at 900 K. Therefore, for the thermoelectric application of ScSb, it is necessary to improve the correlated parameters in other ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  ADS  Google Scholar 

  2. L.E. Bell, Science 321, 1457–1461 (2008)

    Article  ADS  Google Scholar 

  3. X. Zhang, L.D. Zhao, J. Materiomics 1, 92–105 (2015)

    Article  Google Scholar 

  4. F.J. DiSalvo, Science 285, 703 (1999)

    Article  Google Scholar 

  5. I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh, T. Mori, Sci. Technol. Adv. Mater. 19, 836–862 (2018)

    Article  Google Scholar 

  6. Y.S. Lan, X.R. Chen, C.E. Hu, Y. Cheng, Q.F. Chen, J. Mater. Chem. A 7, 11134 (2019)

    Article  Google Scholar 

  7. Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, G.J. Snyder, Nature 473, 66–69 (2011)

    Article  ADS  Google Scholar 

  8. C.Q. Xu, B. Li, M.R. van Delft, W.H. Jiao, W. Zhou, B. Qian, N.D. Zhigadlo, D. Qian, R. Sankar, N.E. Hussey, X.F. Xu, Phys. Rev. B 99, 024110 (2019)

    Article  ADS  Google Scholar 

  9. O. Pavlosiuk, M. Kleinert, P. Swatek, D. Kaczorowski, P. Wisniewski, Sci. Rep. 7, 12822 (2017)

    Article  ADS  Google Scholar 

  10. M. Narimani, S. Yalameha, Z. Nourbakhsh, J. Phys. Condens. Matter 32, 255501 (2020)

    Article  ADS  Google Scholar 

  11. A.A. Taskin, K. Segawa, Y. Ando, Phys. Rev. B 82, 121302(R) (2010)

    Article  ADS  Google Scholar 

  12. J.J. Song, F. Tang, W. Zhou, Y. Fang, H.L. Yu, Z.D. Han, B. Qian, X.F. Jiang, D.H. Wang, Y.W. Du, J. Mater. Chem. C 6, 3026–3033 (2018)

    Article  Google Scholar 

  13. W.J. Ban, W.T. Guo, J.L. Luo, N.L. Wang, Chin. Phys. Lett. 34, 077804 (2017)

    Article  ADS  Google Scholar 

  14. X.H. Niu, D.F. Xu, Y.H. Bai, Q. Song, X.P. Shen, B.P. Xie, Z. Sun, Y.B. Huang, D.C. Peets, D.L. Feng, Phys. Rev. B 94, 165163 (2016)

    Article  ADS  Google Scholar 

  15. A. Vashist, R.K. Gopal, D. Srivastava, M. Karppinen, Y. Singh, Phys. Rev. B 99, 245131 (2019)

    Article  ADS  Google Scholar 

  16. M. Narimani, S. Yalameha, Z. Nourbakhsh, Phys. E 122, 114199 (2020)

    Article  Google Scholar 

  17. A. Bafekry, F. Shojai, D.M. Hoat, M. Shahrokhi, M. Ghergherehchi, C. Nguyen, RSC Adv. 10, 30398 (2020)

    Article  ADS  Google Scholar 

  18. Y. Zhou, W.L. Tao, Z.Y. Zeng, X.R. Chen, Q.F. Chen, J. Appl. Phys. 125, 045107 (2019)

    Article  ADS  Google Scholar 

  19. A. Bouhemadou, R. Khenata, Phys. Lett. A 362, 476–479 (2007)

    Article  ADS  Google Scholar 

  20. M. Shoaib, G. Murtaza, R. Khenata, M. Farooq, R. Ali, Comput. Mater. Sci. 79, 239–246 (2013)

    Article  Google Scholar 

  21. M. Narimani, Z. Nourbakhsh, J. Phys. Chem. Solids 145, 109537 (2020)

    Article  Google Scholar 

  22. Y.J. Hu, E.I.P. Aulestia, K.F. Tse, C.N. Kuo, J.Y. Zhu, C.S. Lue, K.T. Lai, S.K. Goh, Phys. Rev. B 98, 035133 (2018)

    Article  ADS  Google Scholar 

  23. M. Narimani, Z. Nourbakhsh, Phys. E 127, 114518 (2021)

    Article  Google Scholar 

  24. Nisha,H.S. Saini, N. Kumar, S. Singhmar, J. Thakur, S. Srivastava, M.K. Kashyap, A.H. Reshak, Phys. Lett. A 384, 126789 (2020)

    Article  Google Scholar 

  25. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  29. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1500 (1980)

    Article  Google Scholar 

  30. A. Togo, I. Tanaka, Scr. Mater. 108, 1–5 (2015)

    Article  ADS  Google Scholar 

  31. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  Google Scholar 

  32. W. Li, J. Carrete, N.A. Katcho, N. Mingo, Comput. Phys. Commun. 185, 1747–1758 (2014)

    Article  ADS  Google Scholar 

  33. X.Y. Hou, Y. Cheng, C.E. Hu, C.G. Piao, H.Y. Geng, Solid State Commun. 305, 113755 (2020)

    Article  Google Scholar 

  34. W.L. Tao, J.Q. Lan, C.E. Hu, Y. Cheng, J. Zhu, H.Y. Geng, J. Appl. Phys. 127, 035101 (2020)

    Article  ADS  Google Scholar 

  35. H.Y. Lv, W.J. Lu, D.F. Shao, H.Y. Lu, Y.P. Sun, J. Mater. Chem. C 4, 4538–4545 (2016)

    Article  Google Scholar 

  36. H. Wang, J.Q. Lan, C.E. Hu, X.R. Chen, H.Y. Geng, J. Nucl. Mater. 524, 141–148 (2019)

    Article  ADS  Google Scholar 

  37. W.L. Tao, Y.Q. Zhao, Z.Y. Zeng, X.R. Chen, H.Y. Geng, A.C.S. Appl, Mater. Interfaces 13, 8700–8709 (2021)

    Article  Google Scholar 

  38. M. Teng, H.Z. Fu, J.W. Feng, W.F. Liu, G. Tao, J. Mater. Sci. 47, 6673–6678 (2012)

    Article  ADS  Google Scholar 

  39. J. Haysahi, I. Shirotani, K. Hirano, N. Ishimatsu, O. Shimomura, T. Kikegawa, Solid State Commun. 125, 543–546 (2003)

    Article  ADS  Google Scholar 

  40. N. Acharya, S.P. Sanyal, Solid State Commun. 266, 39–45 (2017)

    Article  ADS  Google Scholar 

  41. B. Mortazavi, M. Shahrokhi, M. Makaremi, T. Rabczuk, Appl. Mater. Today 9, 292–299 (2017)

    Article  Google Scholar 

  42. Q.L. Wei, H.Y. Yang, Y.Y. Wu, Y.B. Liu, Y.H. Li, Nanomaterials 10, 2043 (2020)

    Article  Google Scholar 

  43. X. Feng, J.W. Xiao, R. Melnik, Y. Kawazoe, B. Wen, J. Chem. Phys. 143, 104503 (2015)

    Article  ADS  Google Scholar 

  44. S.D. Guo, Y.H. Wang, W.L. Lu, New J. Phys. 19, 113044 (2017)

    Article  ADS  Google Scholar 

  45. T. Ouyang, H.P. Xiao, C. Tang, M. Hu, J.X. Zhong, Phys. Chem. Chem. Phys. 18, 16709 (2016)

    Article  Google Scholar 

  46. S.D. Guo, J. Phys. Condens. Matter 29, 435704 (2017)

    Article  Google Scholar 

  47. S.D. Guo, B.G. Liu, J. Phys. Condens. Matter 30, 105701 (2018)

    Article  ADS  Google Scholar 

  48. L. Lindsay, D.A. Broido, T.L. Reinecke, Phys. Rev. Lett. 111, 025901 (2013)

    Article  ADS  Google Scholar 

  49. Y. Zhou, Y. Cheng, X.R. Chen, C.E. Hu, Q.F. Chen, Philos. Mag. 98, 1900–1918 (2018)

    Article  ADS  Google Scholar 

  50. E.S. Toberer, L.L. Baranowski, C. Dames, Annu. Rev. Mater. Res. 42, 179–209 (2012)

    Article  ADS  Google Scholar 

  51. M.A. Black, Am. J. Phys. 41, 691–696 (1973)

    Article  ADS  Google Scholar 

  52. D.T. Morelli, V. Jovovic, J.P. Heremans, Phys. Rev. Lett. 101, 035901 (2008)

    Article  ADS  Google Scholar 

  53. X.Y. Hou, J. Tan, C.E. Hu, X.R. Chen, H.Y. Geng, Phys. Lett. A 390, 127083 (2021)

    Article  Google Scholar 

  54. B. Peng, H. Zhang, H.Z. Shao, H.L. Lu, D.W. Zhang, H.Y. Zhu, Nano Energy 30, 225–234 (2016)

    Article  Google Scholar 

  55. K. Kaur, S. Dhiman, R. Kumar, Phys. Lett. A 381, 339–343 (2017)

    Article  Google Scholar 

  56. S.D. Guo, L. Qiu, J. Phys. D Appl. Phys. 50, 015101 (2017)

    Article  ADS  Google Scholar 

  57. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003)

    Article  ADS  Google Scholar 

  58. Y. Benmalem, A. Abbad, W. Benstaali, H.A. Bentounes, T. Seddik, T. Lantri, J. Comput. Electron. 17, 881–887 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12074274), the Science Challenge Project (Grant No. TZ2016001), and the NSAF (Grant No. U1830101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui-E Hu or Yan Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, FY., Tao, WL., Hu, CE. et al. Thermal transport properties of semimetal scandium antimonide: a first-principles study. Appl. Phys. A 127, 543 (2021). https://doi.org/10.1007/s00339-021-04692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04692-6

Keywords

Navigation