Skip to main content
Log in

Multi-enzyme cascade for sustainable synthesis of l-threo-phenylserine by modulating aldehydes inhibition and kinetic/thermodynamic controls

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

l-Threonine transaldolase could catalyze the transaldolation of l-threonine and aldehyde to generate β-hydroxy-α-amino acids with high diastereoselectivity. A novel l-threonine transaldolase (PmLTTA) was identified from Pseudomonas sp. through genome mining. PmLTTA exhibited high activity in the synthesis of l-threo-phenylserine from l-threonine and benzaldehyde, with specific activity of 5.48 U mg–1. However, the application of PmLTTA was impeded by the low conversion ratio and variable diastereoselectivity, which were caused by the toxicity of aldehydes and kinetic/thermodynamic controls in the transaldolation reaction. To solve these issues, alcohol dehydrogenase was used to remove the by-product acetaldehyde, and then carboxylic acid reductase was introduced to alleviate the inhibition of benzaldehyde and toxicity of DMSO. Finally, a multi-enzyme cascade reaction, comprising of PmLTTA, carboxylic acid reductase, alcohol dehydrogenase and glucose dehydrogenase, was constructed to prepare l-threo-phenylserine from cheap benzoic acid, in which alleviated inhibition of aldehydes and desirable diastereoselectivity were achieved. Under the optimized conditions, the conversion ratio of 57.1% and de value of 95.3% were reached. This study provides an efficient and green approach for the synthesis of chiral l-threo-phenylserine from industrial byproduct, and provides guidance for the development of cascade reactions influenced by the toxic intermediates and complicated kinetic/thermodynamic controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barbie P, Kazmaier U. Total synthesis of cyclomarin A, a marine cycloheptapeptide with anti-tuberculosis and anti-malaria activity. Org Lett. 2016;18(2):204–7. https://doi.org/10.1021/acs.orglett.5b03292.

    Article  CAS  PubMed  Google Scholar 

  2. Gwon HJ, Baik SH. Diastereoselective synthesis of L: -threo-3,4-dihydroxyphenylserine by low-specific L: -threonine aldolase mutants. Biotechnol Lett. 2010;32(1):143–9. https://doi.org/10.1007/s10529-009-0125-z.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao W, Yang B, Zha R, Zhang Z, Tang S, Pan Y, Qi N, Zhu L, Wang B. A recombinant L-threonine aldolase with high diastereoselectivity in the synthesis of L-threo-dihydroxyphenylserine. Biochem Eng J. 2020. https://doi.org/10.1016/j.bej.2020.107852.

    Article  Google Scholar 

  4. Lamotte G, Holmes C, Sullivan P, Goldstein DS. Substantial renal conversion of L-threo-3,4-dihydroxyphenylserine (droxidopa) to norepinephrine in patients with neurogenic orthostatic hypotension. Clin Auton Res. 2019;29(1):113–7. https://doi.org/10.1007/s10286-018-0564-5.

    Article  PubMed  Google Scholar 

  5. Zhao GH, Li H, Liu W, Zhang WG, Zhang F, Liu Q, Jiao QC. Preparation of optically active beta-hydroxy-alpha-amino acid by immobilized Escherichia coli cells with serine hydroxymethyl transferase activity. Amino Acids. 2011;40(1):215–20. https://doi.org/10.1007/s00726-010-0637-9.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q, Chen X, Feng J, Wu Q, Zhu D, Ma Y. Improving and inverting Cβ-stereoselectivity of threonine aldolase via substrate-binding-guided mutagenesis and a stepwise visual screening. ACS Catal. 2019;9(5):4462–9. https://doi.org/10.1021/acscatal.9b00859.

    Article  CAS  Google Scholar 

  7. Ashford PA, Bew SP. Recent advances in the synthesis of new glycopeptide antibiotics. Chem Soc Rev. 2012;41(3):957–78. https://doi.org/10.1039/c1cs15125h.

    Article  CAS  PubMed  Google Scholar 

  8. Masruri WAC, McLeod MD. Osmium-catalyzed vicinal oxyamination of alkenes by N-(4-toluenesulfonyloxy)carbamates. J Org Chem. 2012;77(19):8480–91. https://doi.org/10.1021/jo301372y.

    Article  CAS  PubMed  Google Scholar 

  9. Katsuki T, Sharpless KB. The first practical method for asymmetric epoxidation. J Am Chem Soc. 1980;102(18):5974–6. https://doi.org/10.1021/ja00538a077.

    Article  CAS  Google Scholar 

  10. Levitskiy OA, Grishin YK, Magdesieva TV. Stereoselective electrosynthesis of β-hydroxy-α-amino acids in the form of NiII-schiff-base complexes. Eur J Org Chem. 2019;2019(20):3174–82. https://doi.org/10.1002/ejoc.201900466.

    Article  CAS  Google Scholar 

  11. Xu L, Wang L-C, Xu X-Q, Lin J. Characteristics of l-threonine transaldolase for asymmetric synthesis of β-hydroxy-α-amino acids. Catal Sci Technol. 2019;9(21):5943–52. https://doi.org/10.1039/c9cy01608b.

    Article  CAS  Google Scholar 

  12. Xu L, Wang LC, Su BM, Xu XQ, Lin J. Multi-enzyme cascade for improving beta-hydroxy-alpha-amino acids production by engineering L-threonine transaldolase and combining acetaldehyde elimination system. Bioresour Technol. 2020;310: 123439. https://doi.org/10.1016/j.biortech.2020.123439.

    Article  CAS  PubMed  Google Scholar 

  13. Česnik M, Sudar M, Roldan R, Hernandez K, Parella T, Clapés P, Charnock S, Vasić-Rački Đ, Findrik Blažević Z. Model-based optimization of the enzymatic aldol addition of propanal to formaldehyde: a first step towards enzymatic synthesis of 3-hydroxybutyric acid. Chem Eng Res Des. 2019;150:140–52. https://doi.org/10.1016/j.cherd.2019.06.025.

    Article  CAS  Google Scholar 

  14. Xu G, Dai W, Wang Y, Zhang L, Sun Z, Zhou J, Ni Y. Molecular switch manipulating Prelog priority of an alcohol dehydrogenase toward bulky-bulky ketones. Mol Catal. 2020. https://doi.org/10.1016/j.mcat.2019.110741.

    Article  Google Scholar 

  15. Gong L, Xiu Y, Dong J, Han R, Xu G, Ni Y. Sustainable one-pot chemo-enzymatic synthesis of chiral furan amino acid from biomass via magnetic solid acid and threonine aldolase. Bioresour Technol. 2021;337: 125344. https://doi.org/10.1016/j.biortech.2021.125344.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar P, Meza A, Ellis JM, Carlson GA, Bingman CA, Buller AR. L-Threonine transaldolase activity is enabled by a persistent catalytic intermediate. ACS Chem Biol. 2021;16(1):86–95. https://doi.org/10.1021/acschembio.0c00753.

    Article  CAS  PubMed  Google Scholar 

  17. Dombrowski N, Seitz KW, Teske AP, Baker BJ. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome. 2017;5(1):106–106. https://doi.org/10.1186/s40168-017-0322-2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou Z, Liu Y, Xu W, Pan J, Luo Z-H, Li M. Genome- and community-level interaction insights into carbon utilization and element cycling functions of hydrothermarchaeota in hydrothermal sediment. mSystems. 2020;5(1):e00795-e1719. https://doi.org/10.1128/mSystems.00795-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scott TA, Heine D, Qin Z, Wilkinson B. An L-threonine transaldolase is required for L-threo-beta-hydroxy-alpha-amino acid assembly during obafluorin biosynthesis. Nat Commun. 2017;8:15935. https://doi.org/10.1038/ncomms15935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang S, Deng H. Peculiarities of promiscuous L-threonine transaldolases for enantioselective synthesis of beta-hydroxy-alpha-amino acids. Appl Microbiol Biotechnol. 2021;105(9):3507–20. https://doi.org/10.1007/s00253-021-11288-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu L, Tong MH, Raab A, Fang Q, Wang S, Kyeremeh K, Yu Y, Deng H. An unusual metal-bound 4-fluorothreonine transaldolase from Streptomyces sp. MA37 catalyses promiscuous transaldol reactions. Appl Microbiol Biotechnol. 2020;104(9):3885–96. https://doi.org/10.1007/s00253-020-10497-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fesko K, Suplatov D, Švedas V. Bioinformatic analysis of the fold type I PLP-dependent enzymes reveals determinants of reaction specificity in L-threonine aldolase from Aeromonas jandaei. FEBS Open Bio. 2018. https://doi.org/10.1002/2211-5463.12441.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steffen-Munsberg F, Vickers C, Kohls H, Land H, Mallin H, Nobili A, Skalden L, van den Bergh T, Joosten HJ, Berglund P, Höhne M, Bornscheuer UT. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv. 2015;33(5):566–604. https://doi.org/10.1016/j.biotechadv.2014.12.012.

    Article  CAS  PubMed  Google Scholar 

  24. Eliot AC, Kirsch JF. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem. 2004;73:383–415. https://doi.org/10.1146/annurev.biochem.73.011303.074021.

    Article  CAS  PubMed  Google Scholar 

  25. Fesko K, Reisinger C, Steinreiber J, Weber H, Schürmann M, Griengl H. Four types of threonine aldolases: similarities and differences in kinetics/thermodynamics. J Mol Catal B. 2008;52–53:19–26. https://doi.org/10.1016/j.molcatb.2007.10.010.

    Article  CAS  Google Scholar 

  26. Steinreiber J, Schurmann M, Wolberg M, van Assema F, Reisinger C, Fesko K, Mink D, Griengl H. Overcoming thermodynamic and kinetic limitations of aldolase-catalyzed reactions by applying multienzymatic dynamic kinetic asymmetric transformations. Angew Chem Int Ed Engl. 2007;46(10):1624–6. https://doi.org/10.1002/anie.200604142.

    Article  CAS  PubMed  Google Scholar 

  27. Park J, Lee H-S, Oh J, Joo JC, Yeon YJ. A highly active carboxylic acid reductase from Mycobacterium abscessus for biocatalytic reduction of vanillic acid to vanillin. Biochem Eng J. 2020;161: 107683. https://doi.org/10.1016/j.bej.2020.107683.

    Article  CAS  Google Scholar 

  28. He A, Li T, Daniels L, Fotheringham I, Rosazza JP. Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl Environ Microbiol. 2004;70(3):1874–81. https://doi.org/10.1128/aem.70.3.1874-1881.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwendenwein D, Ressmann AK, Doerr M, Höhne M, Bornscheuer UT, Mihovilovic MD, Rudroff F, Winkler M. Random mutagenesis-driven improvement of carboxylate reductase activity using an amino benzamidoxime-mediated High-throughput assay. Adv Synth Catal. 2019. https://doi.org/10.1002/adsc.201900155.

    Article  Google Scholar 

  30. Thomas A, Cutlan R, Finnigan W, van der Giezen M, Harmer N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun Biol. 2019;2:429. https://doi.org/10.1038/s42003-019-0677-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Steinreiber J, Fesko K, Reisinger C, Schürmann M, van Assema F, Wolberg M, Mink D, Griengl H. Threonine aldolases—an emerging tool for organic synthesis. Tetrahedron. 2007;63(4):918–26. https://doi.org/10.1016/j.tet.2006.11.035.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Key Research and Development Program (2021YFC2102700), the National Natural Science Foundation of China (22077054, 22078127), the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-07), and Program of Introducing Talents of Discipline to Universities (111-2-06) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guochao Xu or Ye Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15972 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, Y., Xu, G. & Ni, Y. Multi-enzyme cascade for sustainable synthesis of l-threo-phenylserine by modulating aldehydes inhibition and kinetic/thermodynamic controls. Syst Microbiol and Biomanuf 2, 705–715 (2022). https://doi.org/10.1007/s43393-022-00102-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00102-x

Keywords

Navigation